cognee/cognitive_architecture/modules/cognify/vector/load_propositions.py

35 lines
1.3 KiB
Python

import asyncio
from cognitive_architecture.infrastructure.llm.get_llm_client import get_llm_client
from qdrant_client import models
from cognitive_architecture.infrastructure.databases.vector.get_vector_database import get_vector_database
async def get_embeddings(texts:list):
""" Get embeddings for a list of texts"""
client = get_llm_client()
tasks = [ client.async_get_embedding_with_backoff(text, "text-embedding-3-large") for text in texts]
results = await asyncio.gather(*tasks)
return results
async def upload_embedding(id, metadata, some_embeddings, collection_name):
""" Upload a single embedding to a collection in Qdrant."""
client = get_vector_database()
# print("Uploading embeddings")
await client.create_data_points(
collection_name=collection_name,
data_points=[
models.PointStruct(
id=id, vector={"content" :some_embeddings}, payload=metadata
)
]
,
)
async def add_propositions(node_descriptions):
for item in node_descriptions:
embeddings = await get_embeddings([item['description']])
await upload_embedding(id = item['node_id'], metadata = {"meta":item['description']},
some_embeddings = embeddings[0],
collection_name= item['layer_decomposition_uuid'])