cognee/cognitive_architecture/modules/cognify/graph/add_propositions.py

141 lines
5.8 KiB
Python

""" Here we update semantic graph with content that classifier produced"""
import uuid
import json
from datetime import datetime
async def add_propositions(graph_client, category_name, subclass_content, layer_description, new_data, layer_uuid,
layer_decomposition_uuid):
""" Add nodes and edges to the graph for the given LLM knowledge graph and the layer"""
# Find the node ID for the subclass within the category
await graph_client.load_graph_from_file()
subclass_node_id = None
for node, data in graph_client.graph.nodes(data=True):
if subclass_content in node:
subclass_node_id = node
print(subclass_node_id)
if not subclass_node_id:
print(f"Subclass '{subclass_content}' under category '{category_name}' not found in the graph.")
return graph_client
# Mapping from old node IDs to new node IDs
node_id_mapping = {}
# Add nodes from the Pydantic object
for node in new_data.nodes:
unique_node_id = uuid.uuid4()
new_node_id = f"{node.description} - {str(layer_uuid)} - {str(layer_decomposition_uuid)} - {str(unique_node_id)}"
await graph_client.add_node(new_node_id,
created_at=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
updated_at=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
description=node.description,
category=node.category,
memory_type=node.memory_type,
layer_uuid=str(layer_uuid),
layer_description=str(layer_description),
layer_decomposition_uuid=str(layer_decomposition_uuid),
unique_id=str(unique_node_id),
type='detail')
await graph_client.add_edge(subclass_node_id, new_node_id, relationship='detail')
# Store the mapping from old node ID to new node ID
node_id_mapping[node.id] = new_node_id
# Add edges from the Pydantic object using the new node IDs
for edge in new_data.edges:
# Use the mapping to get the new node IDs
source_node_id = node_id_mapping.get(edge.source)
target_node_id = node_id_mapping.get(edge.target)
if source_node_id and target_node_id:
await graph_client.add_edge(source_node_id, target_node_id, description=edge.description, relationship='relation')
else:
print(f"Could not find mapping for edge from {edge.source} to {edge.target}")
return graph_client
async def append_to_graph(layer_graphs, required_layers, graph_client):
# Generate a UUID for the overall layer
layer_uuid = uuid.uuid4()
decomposition_uuids = set()
# Extract category name from required_layers data
category_name = required_layers["data_type"]
# Extract subgroup name from required_layers data
# Assuming there's always at least one subclass and we're taking the first
subgroup_name = required_layers["layer_name"]
for layer_ind in layer_graphs:
for layer_json, knowledge_graph in layer_ind.items():
# Decode the JSON key to get the layer description
layer_description = json.loads(layer_json)
# Generate a UUID for this particular layer decomposition
layer_decomposition_uuid = uuid.uuid4()
decomposition_uuids.add(layer_decomposition_uuid)
# Assuming append_data_to_graph is defined elsewhere and appends data to graph_client
# You would pass relevant information from knowledge_graph along with other details to this function
await add_propositions(graph_client, category_name, subgroup_name, layer_description, knowledge_graph,
layer_uuid, layer_decomposition_uuid)
# Print updated graph for verification (assuming F is the updated NetworkX Graph)
print("Updated Nodes:", graph_client.graph.nodes(data=True))
return decomposition_uuids
# if __name__ == "__main__":
# import asyncio
# # Assuming all necessary imports and GraphDBType, get_graph_client, Document, DocumentType, etc. are defined
# # Initialize the graph client
# graph_client = get_graph_client(GraphDBType.NETWORKX)
# from typing import List, Type
# # Assuming generate_graph, KnowledgeGraph, and other necessary components are defined elsewhere
# async def generate_graphs_for_all_layers(text_input: str, layers: List[str], response_model: Type[BaseModel]):
# tasks = [generate_graph(text_input, "generate_graph_prompt.txt", {'layer': layer}, response_model) for layer in
# layers]
# return await asyncio.gather(*tasks)
# input_article_one= "The quick brown fox jumps over the lazy dog"
# # Execute the async function and print results for each set of layers
# async def async_graph_per_layer(text_input: str, cognitive_layers: List[str]):
# graphs = await generate_graphs_for_all_layers(text_input, cognitive_layers, KnowledgeGraph)
# # for layer, graph in zip(cognitive_layers, graphs):
# # print(f"{layer}: {graph}")
# return graphs
# cognitive_layers_one = ['Structural Layer', 'Semantic Layer',
# 'Syntactic Layer',
# 'Discourse Layer',
# 'Pragmatic Layer',
# 'Stylistic Layer',
# 'Referential Layer',
# 'Citation Layer',
# 'Metadata Layer']
# required_layers_one = DefaultContentPrediction(
# label=TextContent(
# type='TEXT',
# subclass=[TextSubclass.ARTICLES]
# )
# )
# # Run the async function for each set of cognitive layers
# level_1_graph = asyncio.run( async_graph_per_layer(input_article_one, cognitive_layers_one))
# G = asyncio.run(append_to_graph(level_1_graph, required_layers_one, graph_client))