cognee/evals/deepeval_on_swe_bench.py
2024-11-12 17:40:42 +01:00

167 lines
No EOL
5.6 KiB
Python

from typing import List, Dict, Type
from swebench.harness.utils import load_swebench_dataset
from deepeval.dataset import EvaluationDataset
from deepeval.test_case import LLMTestCase
from pydantic import BaseModel
from deepeval.synthesizer import Synthesizer
# DeepEval dataset for reference
# synthesizer = Synthesizer()
# synthesizer.generate_goldens_from_docs(
# document_paths=['/app/.data/short_stories/soldiers_home.pdf'],
# include_expected_output=True
# )
def convert_swe_to_deepeval(swe_dataset: List[Dict]):
deepeval_dataset = EvaluationDataset()
for datum in swe_dataset:
input = datum["problem_statement"]
expected_output = datum["patch"]
context = [datum["text"]]
# retrieval_context = datum.get(retrieval_context_key_name)
# tools_called = datum.get(tools_called_key_name)
# expected_tools = json_obj.get(expected_tools_key_name)
deepeval_dataset.add_test_case(
LLMTestCase(
input=input,
actual_output=None,
expected_output=expected_output,
context=context,
# retrieval_context=retrieval_context,
# tools_called=tools_called,
# expected_tools=expected_tools,
)
)
return deepeval_dataset
from cognee.infrastructure.llm.get_llm_client import get_llm_client
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
deepeval_dataset = convert_swe_to_deepeval(swe_dataset)
import logging
logger = logging.getLogger(__name__)
class AnswerModel(BaseModel):
response:str
def get_answer_base(content: str, context:str, response_model: Type[BaseModel]):
llm_client = get_llm_client()
system_prompt = "THIS IS YOUR CONTEXT:" + str(context)
return llm_client.create_structured_output(content, system_prompt, response_model)
def get_answer(content: str,context, model: Type[BaseModel]= AnswerModel):
try:
return (get_answer_base(
content,
context,
model
))
except Exception as error:
logger.error("Error extracting cognitive layers from content: %s", error, exc_info = True)
raise error
async def run_cognify_base_rag():
from cognee.api.v1.add import add
from cognee.api.v1.prune import prune
from cognee.api.v1.cognify.cognify import cognify
await prune.prune_system()
await add("data://test_datasets", "initial_test")
graph = await cognify("initial_test")
pass
import os
from cognee.base_config import get_base_config
from cognee.infrastructure.databases.vector import get_vector_engine
async def cognify_search_base_rag(content:str, context:str):
base_config = get_base_config()
cognee_directory_path = os.path.abspath(".cognee_system")
base_config.system_root_directory = cognee_directory_path
vector_engine = get_vector_engine()
return_ = await vector_engine.search(collection_name="basic_rag", query_text=content, limit=10)
print("results", return_)
return return_
async def cognify_search_graph(content:str, context:str):
from cognee.api.v1.search import search, SearchType
params = {'query': 'Donald Trump'}
results = await search(SearchType.INSIGHTS, params)
print("results", results)
return results
def convert_goldens_to_test_cases(test_cases_raw: List[LLMTestCase]) -> List[LLMTestCase]:
test_cases = []
for case in test_cases_raw:
test_case = LLMTestCase(
input=case.input,
# Generate actual output using the 'input' and 'additional_metadata'
actual_output= str(get_answer(case.input, case.context).model_dump()['response']),
expected_output=case.expected_output,
context=case.context,
retrieval_context=["retrieval_context"],
)
test_cases.append(test_case)
return test_cases
def convert_swe_to_deepeval_testcases(swe_dataset: List[Dict]):
deepeval_dataset = EvaluationDataset()
for datum in swe_dataset[:4]:
input = datum["problem_statement"]
expected_output = datum["patch"]
context = [datum["text"]]
# retrieval_context = datum.get(retrieval_context_key_name)
# tools_called = datum.get(tools_called_key_name)
# expected_tools = json_obj.get(expected_tools_key_name)
deepeval_dataset.add_test_case(
LLMTestCase(
input=input,
actual_output= str(get_answer(input, context).model_dump()['response']),
expected_output=expected_output,
context=context,
# retrieval_context=retrieval_context,
# tools_called=tools_called,
# expected_tools=expected_tools,
)
)
return deepeval_dataset
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
test_dataset = convert_swe_to_deepeval_testcases(swe_dataset)
if __name__ == "__main__":
import asyncio
async def main():
# await run_cognify_base_rag()
# await cognify_search_base_rag("show_all_processes", "context")
await cognify_search_graph("show_all_processes", "context")
asyncio.run(main())
# run_cognify_base_rag_and_search()
# # Data preprocessing before setting the dataset test cases
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
test_dataset = convert_swe_to_deepeval_testcases(swe_dataset)
from deepeval.metrics import HallucinationMetric
metric = HallucinationMetric()
evalresult = test_dataset.evaluate([metric])
pass