167 lines
No EOL
5.6 KiB
Python
167 lines
No EOL
5.6 KiB
Python
from typing import List, Dict, Type
|
|
from swebench.harness.utils import load_swebench_dataset
|
|
from deepeval.dataset import EvaluationDataset
|
|
from deepeval.test_case import LLMTestCase
|
|
from pydantic import BaseModel
|
|
|
|
from deepeval.synthesizer import Synthesizer
|
|
|
|
|
|
# DeepEval dataset for reference
|
|
# synthesizer = Synthesizer()
|
|
# synthesizer.generate_goldens_from_docs(
|
|
# document_paths=['/app/.data/short_stories/soldiers_home.pdf'],
|
|
# include_expected_output=True
|
|
# )
|
|
|
|
def convert_swe_to_deepeval(swe_dataset: List[Dict]):
|
|
deepeval_dataset = EvaluationDataset()
|
|
for datum in swe_dataset:
|
|
input = datum["problem_statement"]
|
|
expected_output = datum["patch"]
|
|
context = [datum["text"]]
|
|
# retrieval_context = datum.get(retrieval_context_key_name)
|
|
# tools_called = datum.get(tools_called_key_name)
|
|
# expected_tools = json_obj.get(expected_tools_key_name)
|
|
|
|
deepeval_dataset.add_test_case(
|
|
LLMTestCase(
|
|
input=input,
|
|
actual_output=None,
|
|
expected_output=expected_output,
|
|
context=context,
|
|
# retrieval_context=retrieval_context,
|
|
# tools_called=tools_called,
|
|
# expected_tools=expected_tools,
|
|
)
|
|
)
|
|
return deepeval_dataset
|
|
|
|
|
|
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
|
|
|
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
|
|
deepeval_dataset = convert_swe_to_deepeval(swe_dataset)
|
|
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class AnswerModel(BaseModel):
|
|
response:str
|
|
|
|
def get_answer_base(content: str, context:str, response_model: Type[BaseModel]):
|
|
llm_client = get_llm_client()
|
|
|
|
system_prompt = "THIS IS YOUR CONTEXT:" + str(context)
|
|
|
|
return llm_client.create_structured_output(content, system_prompt, response_model)
|
|
|
|
def get_answer(content: str,context, model: Type[BaseModel]= AnswerModel):
|
|
|
|
try:
|
|
return (get_answer_base(
|
|
content,
|
|
context,
|
|
model
|
|
))
|
|
except Exception as error:
|
|
logger.error("Error extracting cognitive layers from content: %s", error, exc_info = True)
|
|
raise error
|
|
|
|
async def run_cognify_base_rag():
|
|
from cognee.api.v1.add import add
|
|
from cognee.api.v1.prune import prune
|
|
from cognee.api.v1.cognify.cognify import cognify
|
|
|
|
await prune.prune_system()
|
|
|
|
await add("data://test_datasets", "initial_test")
|
|
|
|
graph = await cognify("initial_test")
|
|
pass
|
|
|
|
|
|
import os
|
|
from cognee.base_config import get_base_config
|
|
from cognee.infrastructure.databases.vector import get_vector_engine
|
|
|
|
async def cognify_search_base_rag(content:str, context:str):
|
|
base_config = get_base_config()
|
|
|
|
cognee_directory_path = os.path.abspath(".cognee_system")
|
|
base_config.system_root_directory = cognee_directory_path
|
|
|
|
vector_engine = get_vector_engine()
|
|
|
|
return_ = await vector_engine.search(collection_name="basic_rag", query_text=content, limit=10)
|
|
|
|
print("results", return_)
|
|
return return_
|
|
|
|
async def cognify_search_graph(content:str, context:str):
|
|
from cognee.api.v1.search import search, SearchType
|
|
params = {'query': 'Donald Trump'}
|
|
|
|
results = await search(SearchType.INSIGHTS, params)
|
|
print("results", results)
|
|
return results
|
|
|
|
|
|
def convert_goldens_to_test_cases(test_cases_raw: List[LLMTestCase]) -> List[LLMTestCase]:
|
|
test_cases = []
|
|
for case in test_cases_raw:
|
|
test_case = LLMTestCase(
|
|
input=case.input,
|
|
# Generate actual output using the 'input' and 'additional_metadata'
|
|
actual_output= str(get_answer(case.input, case.context).model_dump()['response']),
|
|
expected_output=case.expected_output,
|
|
context=case.context,
|
|
retrieval_context=["retrieval_context"],
|
|
)
|
|
test_cases.append(test_case)
|
|
return test_cases
|
|
|
|
def convert_swe_to_deepeval_testcases(swe_dataset: List[Dict]):
|
|
deepeval_dataset = EvaluationDataset()
|
|
for datum in swe_dataset[:4]:
|
|
input = datum["problem_statement"]
|
|
expected_output = datum["patch"]
|
|
context = [datum["text"]]
|
|
# retrieval_context = datum.get(retrieval_context_key_name)
|
|
# tools_called = datum.get(tools_called_key_name)
|
|
# expected_tools = json_obj.get(expected_tools_key_name)
|
|
|
|
deepeval_dataset.add_test_case(
|
|
LLMTestCase(
|
|
input=input,
|
|
actual_output= str(get_answer(input, context).model_dump()['response']),
|
|
expected_output=expected_output,
|
|
context=context,
|
|
# retrieval_context=retrieval_context,
|
|
# tools_called=tools_called,
|
|
# expected_tools=expected_tools,
|
|
)
|
|
)
|
|
return deepeval_dataset
|
|
|
|
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
|
|
test_dataset = convert_swe_to_deepeval_testcases(swe_dataset)
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import asyncio
|
|
|
|
async def main():
|
|
# await run_cognify_base_rag()
|
|
# await cognify_search_base_rag("show_all_processes", "context")
|
|
await cognify_search_graph("show_all_processes", "context")
|
|
asyncio.run(main())
|
|
# run_cognify_base_rag_and_search()
|
|
# # Data preprocessing before setting the dataset test cases
|
|
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
|
|
test_dataset = convert_swe_to_deepeval_testcases(swe_dataset)
|
|
from deepeval.metrics import HallucinationMetric
|
|
metric = HallucinationMetric()
|
|
evalresult = test_dataset.evaluate([metric])
|
|
pass |