cognee/examples/python/feedback_enrichment_minimal_example.py

81 lines
3 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import asyncio
import cognee
from cognee.api.v1.search import SearchType
from cognee.modules.pipelines.tasks.task import Task
from cognee.tasks.graph import extract_graph_from_data
from cognee.tasks.storage import add_data_points
from cognee.shared.data_models import KnowledgeGraph
from cognee.tasks.feedback.extract_feedback_interactions import extract_feedback_interactions
from cognee.tasks.feedback.generate_improved_answers import generate_improved_answers
from cognee.tasks.feedback.create_enrichments import create_enrichments
from cognee.tasks.feedback.link_enrichments_to_feedback import link_enrichments_to_feedback
CONVERSATION = [
"Alice: Hey, Bob. Did you talk to Mallory?",
"Bob: Yeah, I just saw her before coming here.",
"Alice: Then she told you to bring my documents, right?",
"Bob: Uh… not exactly. She said you wanted me to bring you donuts. Which sounded kind of odd…",
"Alice: Ugh, shes so annoying. Thanks for the donuts anyway!",
]
async def initialize_conversation_and_graph(conversation):
"""Prune data/system, add conversation, cognify."""
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
await cognee.add(conversation)
await cognee.cognify()
async def run_question_and_submit_feedback(question_text: str) -> bool:
"""Ask question, submit feedback based on correctness, and return correctness flag."""
result = await cognee.search(
query_type=SearchType.GRAPH_COMPLETION,
query_text=question_text,
save_interaction=True,
)
answer_text = str(result).lower()
mentions_mallory = "mallory" in answer_text
feedback_text = (
"Great answers, very helpful!"
if mentions_mallory
else "The answer about Bob and donuts was wrong."
)
await cognee.search(
query_type=SearchType.FEEDBACK,
query_text=feedback_text,
last_k=1,
)
return mentions_mallory
async def run_feedback_enrichment_memify(last_n: int = 5):
"""Execute memify with extraction, answer improvement, enrichment creation, and graph processing tasks."""
# Instantiate tasks with their own kwargs
extraction_tasks = [Task(extract_feedback_interactions, last_n=last_n)]
enrichment_tasks = [
Task(generate_improved_answers, top_k=20),
Task(create_enrichments),
Task(extract_graph_from_data, graph_model=KnowledgeGraph, task_config={"batch_size": 10}),
Task(add_data_points, task_config={"batch_size": 10}),
Task(link_enrichments_to_feedback),
]
await cognee.memify(
extraction_tasks=extraction_tasks,
enrichment_tasks=enrichment_tasks,
data=[{}], # A placeholder to prevent fetching the entire graph
)
async def main():
await initialize_conversation_and_graph(CONVERSATION)
is_correct = await run_question_and_submit_feedback("Who told Bob to bring the donuts?")
if not is_correct:
await run_feedback_enrichment_memify(last_n=5)
if __name__ == "__main__":
asyncio.run(main())