# Make sure to install the following packages: dlt, langchain, duckdb, python-dotenv, openai, weaviate-client import logging from langchain.text_splitter import RecursiveCharacterTextSplitter from marshmallow import Schema, fields from cognitive_architecture.database.vectordb.loaders.loaders import _document_loader # Add the parent directory to sys.path logging.basicConfig(level=logging.INFO) from langchain.retrievers import WeaviateHybridSearchRetriever, ParentDocumentRetriever from weaviate.gql.get import HybridFusion import tracemalloc tracemalloc.start() import os from langchain.embeddings.openai import OpenAIEmbeddings from dotenv import load_dotenv from langchain.schema import Document import weaviate load_dotenv() from ...config import Config config = Config() config.load() LTM_MEMORY_ID_DEFAULT = "00000" ST_MEMORY_ID_DEFAULT = "0000" BUFFER_ID_DEFAULT = "0000" class VectorDB: OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "") def __init__( self, user_id: str, index_name: str, memory_id: str, namespace: str = None, embeddings = None, ): self.user_id = user_id self.index_name = index_name self.namespace = namespace self.memory_id = memory_id self.embeddings = embeddings class PineconeVectorDB(VectorDB): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.init_pinecone(self.index_name) def init_pinecone(self, index_name): # Pinecone initialization logic pass import langchain.embeddings class WeaviateVectorDB(VectorDB): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.init_weaviate(embeddings= self.embeddings, namespace = self.namespace) def init_weaviate(self, embeddings=OpenAIEmbeddings(), namespace=None,retriever_type="",): # Weaviate initialization logic auth_config = weaviate.auth.AuthApiKey( api_key=os.environ.get("WEAVIATE_API_KEY") ) client = weaviate.Client( url=os.environ.get("WEAVIATE_URL"), auth_client_secret=auth_config, additional_headers={"X-OpenAI-Api-Key": os.environ.get("OPENAI_API_KEY")}, ) if retriever_type == "single_document_context": retriever = WeaviateHybridSearchRetriever( client=client, index_name=namespace, text_key="text", attributes=[], embedding=embeddings, create_schema_if_missing=True, ) return retriever elif retriever_type == "multi_document_context": retriever = WeaviateHybridSearchRetriever( client=client, index_name=namespace, text_key="text", attributes=[], embedding=embeddings, create_schema_if_missing=True, ) return retriever else : return client # child_splitter = RecursiveCharacterTextSplitter(chunk_size=400) # store = InMemoryStore() # retriever = ParentDocumentRetriever( # vectorstore=vectorstore, # docstore=store, # child_splitter=child_splitter, # ) from marshmallow import Schema, fields def create_document_structure(observation, params, metadata_schema_class=None): """ Create and validate a document structure with optional custom fields. :param observation: Content of the document. :param params: Metadata information. :param metadata_schema_class: Custom metadata schema class (optional). :return: A list containing the validated document data. """ document_data = { "metadata": params, "page_content": observation } def get_document_schema(): class DynamicDocumentSchema(Schema): metadata = fields.Nested(metadata_schema_class, required=True) page_content = fields.Str(required=True) return DynamicDocumentSchema # Validate and deserialize, defaulting to "1.0" if not provided CurrentDocumentSchema = get_document_schema() loaded_document = CurrentDocumentSchema().load(document_data) return [loaded_document] def _stuct(self, observation, params, metadata_schema_class =None): """Utility function to create the document structure with optional custom fields.""" # Construct document data document_data = { "metadata": params, "page_content": observation } def get_document_schema(): class DynamicDocumentSchema(Schema): metadata = fields.Nested(metadata_schema_class, required=True) page_content = fields.Str(required=True) return DynamicDocumentSchema # Validate and deserialize # Default to "1.0" if not provided CurrentDocumentSchema = get_document_schema() loaded_document = CurrentDocumentSchema().load(document_data) return [loaded_document] async def add_memories(self, observation, loader_settings=None, params=None, namespace=None, metadata_schema_class=None, embeddings = 'hybrid'): # Update Weaviate memories here if namespace is None: namespace = self.namespace retriever = self.init_weaviate(embeddings=OpenAIEmbeddings(),namespace = namespace, retriever_type="single_document_context") if loader_settings: # Assuming _document_loader returns a list of documents documents = await _document_loader(observation, loader_settings) logging.info("here are the docs %s", str(documents)) chunk_count = 0 for doc in documents[0]: chunk_count += 1 params['chunk_order'] = chunk_count # document_to_load = self._stuct(doc.page_content, params, metadata_schema_class) # logging.info("Loading document with provided loader settings %s", str(document_to_load)) retriever.add_documents([ Document(metadata=params, page_content=doc.page_content)]) else: chunk_count = 0 from cognitive_architecture.database.vectordb.chunkers.chunkers import chunk_data documents = [chunk_data(chunk_strategy="VANILLA", source_data=observation, chunk_size=50, chunk_overlap=20)] for doc in documents[0]: chunk_count += 1 params['chunk_order'] = chunk_count # document_to_load = self._stuct(observation, params, metadata_schema_class) logging.info("Loading document with defautl loader settings %s", str(doc)) # logging.info("Loading document with defautl loader settings %s", str(document_to_load)) retriever.add_documents([ Document(metadata=params, page_content=doc.page_content)]) async def fetch_memories(self, observation: str, namespace: str = None, search_type: str = 'hybrid', **kwargs): """ Fetch documents from weaviate. Parameters: - observation (str): User query. - namespace (str, optional): Type of memory accessed. - search_type (str, optional): Type of search ('text', 'hybrid', 'bm25', 'generate', 'generate_grouped'). Defaults to 'hybrid'. - **kwargs: Additional parameters for flexibility. Returns: List of documents matching the query or an empty list in case of error. Example: fetch_memories(query="some query", search_type='text', additional_param='value') """ client = self.init_weaviate(namespace =self.namespace) if search_type is None: search_type = 'hybrid' logging.info("The search type is s%", search_type) if search_type == 'summary': from weaviate.classes import Filter client = weaviate.connect_to_wcs( cluster_url=config.weaviate_url, auth_credentials=weaviate.AuthApiKey(config.weaviate_api_key) ) summary_collection = client.collections.get(self.namespace) response = summary_collection.query.fetch_objects( filters=Filter("user_id").equal(self.user_id) & Filter("chunk_order").less_than(25), limit=15 ) return response if not namespace: namespace = self.namespace logging.info("Query on namespace %s", namespace) params_user_id = { "path": ["user_id"], "operator": "Like", "valueText": self.user_id, } def list_objects_of_class(class_name, schema): return [ prop["name"] for class_obj in schema["classes"] if class_obj["class"] == class_name for prop in class_obj["properties"] ] base_query = client.query.get( namespace, list(list_objects_of_class(namespace, client.schema.get())) ).with_additional( ["id", "creationTimeUnix", "lastUpdateTimeUnix", "score", 'distance'] ).with_where(params_user_id).with_limit(10) n_of_observations = kwargs.get('n_of_observations', 2) # try: if search_type == 'text': query_output = ( base_query .with_near_text({"concepts": [observation]}) .with_autocut(n_of_observations) .do() ) elif search_type == 'hybrid': query_output = ( base_query .with_hybrid(query=observation, fusion_type=HybridFusion.RELATIVE_SCORE) .with_autocut(n_of_observations) .do() ) elif search_type == 'bm25': query_output = ( base_query .with_bm25(query=observation) .with_autocut(n_of_observations) .do() ) elif search_type == 'generate': generate_prompt = kwargs.get('generate_prompt', "") query_output = ( base_query .with_generate(single_prompt=observation) .with_near_text({"concepts": [observation]}) .with_autocut(n_of_observations) .do() ) elif search_type == 'generate_grouped': generate_prompt = kwargs.get('generate_prompt', "") query_output = ( base_query .with_generate(grouped_task=observation) .with_near_text({"concepts": [observation]}) .with_autocut(n_of_observations) .do() ) else: logging.error(f"Invalid search_type: {search_type}") return [] # except Exception as e: # logging.error(f"Error executing query: {str(e)}") # return [] return query_output async def delete_memories(self, namespace:str, params: dict = None): if namespace is None: namespace = self.namespace client = self.init_weaviate(namespace = self.namespace) if params: where_filter = { "path": ["id"], "operator": "Equal", "valueText": params.get("id", None), } return client.batch.delete_objects( class_name=self.namespace, # Same `where` filter as in the GraphQL API where=where_filter, ) else: # Delete all objects return client.batch.delete_objects( class_name=namespace, where={ "path": ["version"], "operator": "Equal", "valueText": "1.0", }, ) async def count_memories(self, namespace: str = None, params: dict = None) -> int: """ Count memories in a Weaviate database. Args: namespace (str, optional): The Weaviate namespace to count memories in. If not provided, uses the default namespace. Returns: int: The number of memories in the specified namespace. """ if namespace is None: namespace = self.namespace client = self.init_weaviate(namespace =namespace) try: object_count = client.query.aggregate(namespace).with_meta_count().do() return object_count except Exception as e: logging.info(f"Error counting memories: {str(e)}") # Handle the error or log it return 0 def update_memories(self, observation, namespace: str, params: dict = None): client = self.init_weaviate(namespace = self.namespace) client.data_object.update( data_object={ # "text": observation, "user_id": str(self.user_id), "version": params.get("version", None) or "", "agreement_id": params.get("agreement_id", None) or "", "privacy_policy": params.get("privacy_policy", None) or "", "terms_of_service": params.get("terms_of_service", None) or "", "format": params.get("format", None) or "", "schema_version": params.get("schema_version", None) or "", "checksum": params.get("checksum", None) or "", "owner": params.get("owner", None) or "", "license": params.get("license", None) or "", "validity_start": params.get("validity_start", None) or "", "validity_end": params.get("validity_end", None) or "" # **source_metadata, }, class_name="Test", uuid=params.get("id", None), consistency_level=weaviate.data.replication.ConsistencyLevel.ALL, # default QUORUM ) return