import argparse import json import subprocess import sys from pathlib import Path from swebench.harness.utils import load_swebench_dataset from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE from cognee.api.v1.search import SearchType from cognee.infrastructure.llm.get_llm_client import get_llm_client from cognee.infrastructure.llm.prompts import read_query_prompt from cognee.modules.pipelines import Task, run_tasks from cognee.modules.retrieval.brute_force_triplet_search import \ brute_force_triplet_search # from cognee.shared.data_models import SummarizedContent from cognee.shared.utils import render_graph from cognee.tasks.repo_processor import (enrich_dependency_graph, expand_dependency_graph, get_repo_file_dependencies) from cognee.tasks.storage import add_data_points # from cognee.tasks.summarization import summarize_code from evals.eval_utils import download_github_repo, retrieved_edges_to_string def check_install_package(package_name): """ Check if a pip package is installed and install it if not. Returns True if package is/was installed successfully, False otherwise. """ try: __import__(package_name) return True except ImportError: try: subprocess.check_call( [sys.executable, "-m", "pip", "install", package_name] ) return True except subprocess.CalledProcessError: return False async def generate_patch_with_cognee(instance, llm_client, search_type=SearchType.CHUNKS): import os import pathlib import cognee from cognee.infrastructure.databases.relational import create_db_and_tables file_path = Path(__file__).parent data_directory_path = str(pathlib.Path(os.path.join(file_path, ".data_storage/code_graph")).resolve()) cognee.config.data_root_directory(data_directory_path) cognee_directory_path = str(pathlib.Path(os.path.join(file_path, ".cognee_system/code_graph")).resolve()) cognee.config.system_root_directory(cognee_directory_path) await cognee.prune.prune_data() await cognee.prune.prune_system(metadata = True) await create_db_and_tables() # repo_path = download_github_repo(instance, '../RAW_GIT_REPOS') repo_path = '/Users/borisarzentar/Projects/graphrag' tasks = [ Task(get_repo_file_dependencies), Task(enrich_dependency_graph, task_config = { "batch_size": 50 }), Task(expand_dependency_graph, task_config = { "batch_size": 50 }), Task(add_data_points, task_config = { "batch_size": 50 }), # Task(summarize_code, summarization_model = SummarizedContent), ] pipeline = run_tasks(tasks, repo_path, "cognify_code_pipeline") async for result in pipeline: print(result) print('Here we have the repo under the repo_path') await render_graph(None, include_labels = True, include_nodes = True) problem_statement = instance['problem_statement'] instructions = read_query_prompt("patch_gen_kg_instructions.txt") retrieved_edges = await brute_force_triplet_search(problem_statement, top_k = 3, collections = ["data_point_source_code", "data_point_text"]) retrieved_edges_str = retrieved_edges_to_string(retrieved_edges) prompt = "\n".join([ problem_statement, "", PATCH_EXAMPLE, "", "These are the retrieved edges:", retrieved_edges_str ]) llm_client = get_llm_client() answer_prediction = await llm_client.acreate_structured_output( text_input=prompt, system_prompt=instructions, response_model=str, ) return answer_prediction async def generate_patch_without_cognee(instance, llm_client): instructions = read_query_prompt("patch_gen_instructions.txt") answer_prediction = await llm_client.acreate_structured_output( text_input=instance["text"], system_prompt=instructions, response_model=str, ) return answer_prediction async def get_preds(dataset, with_cognee=True): llm_client = get_llm_client() if with_cognee: model_name = "with_cognee" pred_func = generate_patch_with_cognee else: model_name = "without_cognee" pred_func = generate_patch_without_cognee futures = [ (instance["instance_id"], pred_func(instance, llm_client)) for instance in dataset ] model_patches = await asyncio.gather(*[x[1] for x in futures]) preds = [ { "instance_id": instance_id, "model_patch": model_patch, "model_name_or_path": model_name, } for (instance_id, _), model_patch in zip(futures, model_patches) ] return preds async def main(): parser = argparse.ArgumentParser( description="Run LLM predictions on SWE-bench dataset") parser.add_argument('--cognee_off', action='store_true') parser.add_argument("--max_workers", type=int, required=True) args = parser.parse_args() for dependency in ["transformers", "sentencepiece", "swebench"]: check_install_package(dependency) if args.cognee_off: dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K' dataset = load_swebench_dataset(dataset_name, split='test') predictions_path = "preds_nocognee.json" if not Path(predictions_path).exists(): preds = await get_preds(dataset, with_cognee=False) with open(predictions_path, "w") as file: json.dump(preds, file) else: dataset_name = 'princeton-nlp/SWE-bench_Lite' swe_dataset = load_swebench_dataset( dataset_name, split='test')[:1] predictions_path = "preds.json" preds = await get_preds(swe_dataset, with_cognee=not args.cognee_off) with open(predictions_path, "w") as file: json.dump(preds, file) subprocess.run( [ "python", "-m", "swebench.harness.run_evaluation", "--dataset_name", dataset_name, "--split", "test", "--predictions_path", predictions_path, "--max_workers", str(args.max_workers), "--run_id", "test_run", ] ) if __name__ == "__main__": import asyncio asyncio.run(main(), debug=True)