import os import asyncio import pathlib import cognee from cognee.api.v1.search import SearchType # Prerequisites: # 1. Copy `.env.template` and rename it to `.env`. # 2. Add your OpenAI API key to the `.env` file in the `LLM_API_KEY` field: # LLM_API_KEY = "your_key_here" async def main(): # Create a clean slate for cognee -- reset data and system state await cognee.prune.prune_data() await cognee.prune.prune_system(metadata=True) # cognee knowledge graph will be created based on the text # and description of these files mp3_file_path = os.path.join( pathlib.Path(__file__).parent.parent.parent, ".data/multimedia/text_to_speech.mp3", ) png_file_path = os.path.join( pathlib.Path(__file__).parent.parent.parent, ".data/multimedia/example.png", ) # Add the files, and make it available for cognify await cognee.add([mp3_file_path, png_file_path]) # Use LLMs and cognee to create knowledge graph await cognee.cognify() # Query cognee for summaries of the data in the multimedia files search_results = await cognee.search( SearchType.SUMMARIES, query_text="What is in the multimedia files?", ) # Display search results for result_text in search_results: print(result_text) if __name__ == "__main__": asyncio.run(main())