import argparse import json import subprocess from pathlib import Path from datasets import Dataset from swebench.harness.utils import load_swebench_dataset from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE import cognee from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline from cognee.api.v1.search import SearchType from cognee.infrastructure.databases.graph import get_graph_engine from cognee.infrastructure.llm.get_llm_client import get_llm_client from cognee.infrastructure.llm.prompts import read_query_prompt from evals.eval_utils import download_instances async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS): await cognee.prune.prune_data() await cognee.prune.prune_system(metadata=True) dataset_name = "SWE_test_data" code_text = instance["text"] await cognee.add([code_text], dataset_name) await code_graph_pipeline([dataset_name]) graph_engine = await get_graph_engine() with open(graph_engine.filename, "r") as f: graph_str = f.read() problem_statement = instance['problem_statement'] instructions = read_query_prompt("patch_gen_instructions.txt") prompt = "\n".join([ instructions, "", PATCH_EXAMPLE, "", "This is the knowledge graph:", graph_str ]) llm_client = get_llm_client() answer_prediction = await llm_client.acreate_structured_output( text_input=problem_statement, system_prompt=prompt, response_model=str, ) return answer_prediction async def generate_patch_without_cognee(instance): problem_statement = instance['problem_statement'] prompt = instance["text"] llm_client = get_llm_client() answer_prediction = await llm_client.acreate_structured_output( text_input=problem_statement, system_prompt=prompt, response_model=str, ) return answer_prediction async def get_preds(dataset, with_cognee=True): if with_cognee: model_name = "with_cognee" pred_func = generate_patch_with_cognee else: model_name = "without_cognee" pred_func = generate_patch_without_cognee preds = [{"instance_id": instance["instance_id"], "model_patch": await pred_func(instance), "model_name_or_path": model_name} for instance in dataset] return preds async def main(): parser = argparse.ArgumentParser( description="Run LLM predictions on SWE-bench dataset") parser.add_argument('--cognee_off', action='store_true') args = parser.parse_args() if args.cognee_off: dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K' dataset = load_swebench_dataset(dataset_name, split='test') predictions_path = "preds_nocognee.json" if not Path(predictions_path).exists(): preds = await get_preds(dataset, with_cognee=False) with open(predictions_path, "w") as file: json.dump(preds, file) else: dataset_name = 'princeton-nlp/SWE-bench_Lite' swe_dataset = load_swebench_dataset( dataset_name, split='test')[:1] filepath = Path("SWE-bench_testsample") if filepath.exists(): dataset = Dataset.load_from_disk(filepath) else: dataset = download_instances(swe_dataset, filepath) predictions_path = "preds.json" preds = await get_preds(dataset, with_cognee=not args.cognee_off) with open(predictions_path, "w") as file: json.dump(preds, file) subprocess.run(["python", "-m", "swebench.harness.run_evaluation", "--dataset_name", dataset_name, "--split", "test", "--predictions_path", predictions_path, "--max_workers", "1", "--run_id", "test_run"]) if __name__ == "__main__": import asyncio asyncio.run(main(), debug=True)