{ "cells": [ { "cell_type": "markdown", "id": "25cf0a40e669a70", "metadata": {}, "source": [ "# Understanding Ontologies with Cognee\n", "\n", "This notebook demonstrates how to work with ontologies in scientific research using the Cognee framework. We'll explore how ontologies can enhance our understanding and querying of scientific papers.\n", "\n", "## What is an Ontology?\n", "\n", "An ontology is a formal representation of knowledge that defines:\n", "- Concepts within a domain\n", "- Relationships between concepts\n", "- Properties and attributes\n", "- Rules and constraints\n", "\n", "Key terms:\n", "- **Classes**: Categories or types (e.g., Disease, Symptom)\n", "- **Instances**: Specific examples of classes (e.g., Type 2 Diabetes)\n", "- **Properties**: Relationships between classes/instances (e.g., hasSymptom)\n", "- **Axioms**: Logical statements defining relationships" ] }, { "cell_type": "markdown", "id": "441248da37f2b901", "metadata": {}, "source": [ "## Setup\n", "\n", "First, let's install the required packages and set up our environment:" ] }, { "cell_type": "code", "execution_count": 1, "id": "8cf7ba29f9a150af", "metadata": { "ExecuteTime": { "end_time": "2025-03-26T16:17:55.937140Z", "start_time": "2025-03-26T16:17:55.908542Z" } }, "outputs": [], "source": [ "# Install required package\n", "# !pip install cognee" ] }, { "cell_type": "code", "execution_count": 2, "id": "d825d126b3a0ec26", "metadata": { "ExecuteTime": { "end_time": "2025-03-26T16:18:09.382400Z", "start_time": "2025-03-26T16:18:09.342349Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\n", "\u001b[2m2025-06-18T18:23:32.523592\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDeleted old log file: /Users/borisarzentar/Projects/Topoteretes/cognee/logs/2025-06-18_20-08-11.log\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n", "\n", "\u001b[2m2025-06-18T18:23:32.524072\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mLogging initialized \u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m \u001b[36mcognee_version\u001b[0m=\u001b[35m0.1.42-dev\u001b[0m \u001b[36mos_info\u001b[0m=\u001b[35m'Darwin 24.5.0 (Darwin Kernel Version 24.5.0: Tue Apr 22 19:54:25 PDT 2025; root:xnu-11417.121.6~2/RELEASE_ARM64_T6020)'\u001b[0m \u001b[36mpython_version\u001b[0m=\u001b[35m3.11.5\u001b[0m \u001b[36mstructlog_version\u001b[0m=\u001b[35m25.4.0\u001b[0m\n", "\n", "\u001b[1mHTTP Request: GET https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json \"HTTP/1.1 200 OK\"\u001b[0m\n", "/Users/borisarzentar/Projects/Topoteretes/cognee/.venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n", "/Users/borisarzentar/Projects/Topoteretes/cognee/.venv/lib/python3.11/site-packages/dlt/helpers/dbt/__init__.py:3: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n", " import pkg_resources\n" ] } ], "source": [ "# Import required libraries\n", "import os\n", "import cognee\n", "from cognee.shared.logging_utils import get_logger\n", "from cognee.api.v1.search import SearchType\n", "\n", "logger = get_logger()\n", "\n", "# Set up OpenAI API key (required for Cognee's LLM functionality)\n", "os.environ[\"LLM_API_KEY\"] = \"your-api-key-here\" # Replace with your API key" ] }, { "cell_type": "markdown", "id": "6af350837e86b7a1", "metadata": {}, "source": [ "## Creating the Pipeline\n", "\n", "Let's create a pipeline that will:\n", "1. Clean existing data\n", "2. Process scientific papers\n", "3. Apply ontological knowledge" ] }, { "cell_type": "code", "execution_count": 3, "id": "4d0e4a58e4207a7d", "metadata": { "ExecuteTime": { "end_time": "2025-04-09T17:12:54.006718Z", "start_time": "2025-04-09T17:12:53.992906Z" } }, "outputs": [], "source": [ "async def run_pipeline(ontology_path=None):\n", " # Clean existing data\n", " await cognee.prune.prune_data()\n", " await cognee.prune.prune_system(metadata=True)\n", " \n", " # Set up path to scientific papers\n", " scientific_papers_dir = os.path.join(\n", " os.path.dirname(os.path.dirname(os.path.abspath(\".\"))), \n", " \"cognee\",\n", " \"examples\",\n", " \"data\", \n", " \"scientific_papers/\"\n", " )\n", " \n", " # Add papers to the system\n", " await cognee.add(scientific_papers_dir)\n", " \n", " # Cognify with optional ontology\n", " return await cognee.cognify(ontology_file_path=ontology_path)\n", "\n", "async def query_pipeline(questions):\n", " answers = []\n", " for question in questions:\n", " search_results = await cognee.search(\n", " query_type=SearchType.GRAPH_COMPLETION,\n", " query_text=question,\n", " )\n", " answers.append(search_results)\n", " return answers" ] }, { "cell_type": "markdown", "id": "c87c21a75d6f4d79", "metadata": {}, "source": [ "## Running the Demo\n", "\n", "Let's test our system with some medical questions, comparing results with and without ontological knowledge:" ] }, { "cell_type": "code", "execution_count": 4, "id": "1363772d2b48f5c0", "metadata": { "ExecuteTime": { "end_time": "2025-04-09T17:14:31.818452Z", "start_time": "2025-04-09T17:12:55.491598Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\n", "\u001b[2m2025-06-18T18:23:36.293948\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCleared all data from graph while preserving structure\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:36.358529\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDatabase deleted successfully.\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "--- Results WITH ontology ---\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n", "\u001b[1mLangfuse client is disabled since no public_key was provided as a parameter or environment variable 'LANGFUSE_PUBLIC_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client\u001b[0m\u001b[92m20:23:36 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:23:37 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\n", "\u001b[1mEmbeddingRateLimiter initialized: enabled=False, requests_limit=60, interval_seconds=60\u001b[0m\u001b[92m20:23:37 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:23:37 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\n", "\u001b[2m2025-06-18T18:23:38.051934\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `2bec40b8-e3d1-54ab-bfc5-eb5d4695ce63`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks(tasks: [Task], data)\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:38.052396\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:38.053449\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "User c0d22401-0c0b-40ad-8ce5-8d6094b0461d has registered.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n", "\u001b[2m2025-06-18T18:23:38.501726\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:38.502195\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:38.502710\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `2bec40b8-e3d1-54ab-bfc5-eb5d4695ce63`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks(tasks: [Task], data)\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:38.504289\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mOntology file 'examples/python/ontology_input_example/enriched_medical_ontology_with_classes.owl' not found. No owl ontology will be attached to the graph.\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:38.513310\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `ba0e59ba-8966-58b2-8dbe-0d3d5009b268`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks(tasks: [Task], data)\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:38.513615\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:38.513906\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:38.517146\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task started: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:38.799196\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\u001b[92m20:23:38 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:23:38 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:23:38 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:23:38 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:23:38 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:23:38 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:23:49 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:23:49 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:23:53 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:23:53 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:23:53 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:23:53 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:23:56 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:23:56 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:23:57 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:23:57 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:23:59 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:23:59 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.600042\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'concept' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.600534\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'coffee consumption' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.600963\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cardiovascular health' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.601349\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'condition' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.601735\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'hypertension' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.602104\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'heart failure' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.602479\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'atrial fibrillation' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.602866\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'coronary heart disease' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.603132\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'moderate coffee consumption' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.603519\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'heavy coffee consumption' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.603809\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'filtered coffee' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.604133\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'unfiltered coffee' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.604438\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'compound' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.604826\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'diterpenes' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.605106\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cholesterol levels' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.605528\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'phenolic acids' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.606112\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'person' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.606545\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mendoza, mf' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.606805\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'disease' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.607115\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mortality' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.607557\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'diabetes mellitus' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.607986\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'chemical' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.608277\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'caffeine' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.608613\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'antioxidants' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.609059\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'research method' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.609391\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'meta-analysis' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.609824\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'study' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.610075\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'coffee consumption study' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.610400\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'laura torres-collado' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.610752\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'laura maría compañ-gabucio' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.611364\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'sandra gonzález-palacios' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.611674\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'leyre notario-barandiaran' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.612050\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'alejandro oncina-cánovas' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.612439\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'jesús vioque' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.612753\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'manuela garcía-de la hera' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.613053\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'population' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.613307\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mediterranean population' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.613542\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'health behavior' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.613979\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'health outcome' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.614271\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'health condition' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.614649\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cardiovascular disease' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.615112\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cancer' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.615467\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'valencia nutrition study' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.615863\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'substance' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.616172\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'caffeine' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.616559\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'decaffeinated coffee' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.616818\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'polyphenols' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.617206\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'italian study' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.617580\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'eureye-spain' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.617838\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'group' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.618337\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'participants' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.618740\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'health metric' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.619144\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'characteristics' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.619430\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'socio-demographic characteristics' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.619837\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cardiovascular diseases' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.620181\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'type of coffee consumption' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.620556\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'type' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.620880\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'caffeinated coffee' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.621259\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'all-cause mortality' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.621587\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cancer mortality' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.621931\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cardiovascular disease mortality' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.622302\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'country' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.622561\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'spain' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.622935\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'finding' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.623231\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'preventative effects' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.623547\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'study limitations' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.623825\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'research conclusions' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.624271\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'demographic' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.624617\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'spanish population' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.625004\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'italian population' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.625465\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'elderly population' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.625711\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'united states of america' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.625993\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'food frequency questionnaire' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.626268\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'meta-analysis' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:23:59.626577\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mediterranean diet' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\u001b[92m20:24:00 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:02 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:03 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:03 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:04 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\n", "\u001b[2m2025-06-18T18:24:04.634561\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\u001b[92m20:24:04 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:04 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:04 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:04 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:04 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:04 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:08 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:08 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:08 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:08 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:08 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:08 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:10 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:10 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:10 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:10 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\n", "\u001b[2m2025-06-18T18:24:10.329954\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\u001b[92m20:24:11 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:13 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:14 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:14 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:15 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\n", "\u001b[2m2025-06-18T18:24:15.613402\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:15.613880\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:15.614195\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:15.614471\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task completed: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:15.614721\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:15.614935\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:15.615182\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `ba0e59ba-8966-58b2-8dbe-0d3d5009b268`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks(tasks: [Task], data)\u001b[0m]\u001b[0m\u001b[92m20:24:15 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:16 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:17 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:17 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:19 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:19 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:19 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:21 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:21 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:21 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:25 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:25 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:25 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:26 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:26 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:29 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:29 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:31 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:31 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:33 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:33 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Q: What are common risk factors for Type 2 Diabetes?\n", "A: ['Common risk factors for Type 2 Diabetes include:\\n- Obesity (Body Mass Index ≥30 kg/m²)\\n- High waist circumference (increased risk category)\\n- Sedentary lifestyle (low physical activity)\\n- Smoking status (current smokers)\\n- Hypertension\\n- High cholesterol\\n- Poor nutrition (related to coffee consumption)\\n']\n", "\n", "Q: What preventive measures reduce the risk of Hypertension?\n", "A: ['Preventive measures that reduce the risk of hypertension include moderate coffee consumption, which is associated with a lower risk of developing hypertension. This effect is more pronounced in individuals who are non-smokers or fast caffeine metabolizers. Additionally, filtered coffee is recommended over boiled coffee due to its antiatherogenic properties and lower cholesterol impact.']\n", "\n", "Q: What symptoms indicate possible Cardiovascular Disease?\n", "A: ['Possible symptoms indicating cardiovascular disease include hypertension, heart failure, and coronary heart disease. Hypertension is characterized by persistently elevated blood pressure, heart failure is a chronic condition where the heart does not pump effectively, and coronary heart disease involves the narrowing or blockage of coronary arteries due to plaque buildup.']\n", "\n", "Q: What diseases are associated with Obesity?\n", "A: ['Diseases associated with obesity include hypertension, cardiovascular diseases, diabetes mellitus, and coronary heart disease.']\n", "\n" ] } ], "source": [ "# Test questions\n", "questions = [\n", " \"What are common risk factors for Type 2 Diabetes?\",\n", " \"What preventive measures reduce the risk of Hypertension?\",\n", " \"What symptoms indicate possible Cardiovascular Disease?\",\n", " \"What diseases are associated with Obesity?\"\n", "]\n", "\n", "# Path to medical ontology\n", "ontology_path = \"examples/python/ontology_input_example/enriched_medical_ontology_with_classes.owl\" # Update with your ontology path\n", "\n", "# Run with ontology\n", "print(\"\\n--- Results WITH ontology ---\\n\")\n", "await run_pipeline(ontology_path=ontology_path)\n", "answers_with = await query_pipeline(questions)\n", "for q, a in zip(questions, answers_with):\n", " print(f\"Q: {q}\\nA: {a}\\n\")" ] }, { "cell_type": "code", "execution_count": 5, "id": "3aa18f4cdd5ceff6", "metadata": { "ExecuteTime": { "end_time": "2025-04-09T14:32:24.891560Z", "start_time": "2025-04-09T14:30:47.863808Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\n", "\u001b[2m2025-06-18T18:24:33.294076\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCleared all data from graph while preserving structure\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:33.317640\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mDatabase deleted successfully.\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:33.387322\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `0693bdfd-667e-5f24-adf4-81dc64b99cb4`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks(tasks: [Task], data)\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:33.387792\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:33.388288\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "--- Results WITHOUT ontology ---\n", "\n", "User 2da365d6-bd7c-4750-807e-74e1f340d5d2 has registered.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n", "\u001b[2m2025-06-18T18:24:33.505418\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `ingest_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:33.505934\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `resolve_data_directories`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:33.506308\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `0693bdfd-667e-5f24-adf4-81dc64b99cb4`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks(tasks: [Task], data)\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:33.507654\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mOntology file 'None' not found. No owl ontology will be attached to the graph.\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:33.515544\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run started: `63d064a5-2884-5c10-9aeb-38e16d5955ea`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks(tasks: [Task], data)\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:33.515829\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:33.516136\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:33.519493\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task started: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:33.807889\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\u001b[92m20:24:33 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:33 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:33 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:33 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:33 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:33 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:42 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:42 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:43 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:43 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:46 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:46 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:52 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:52 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:53 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:53 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:53 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:24:53 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.860301\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'person' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.860877\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'laura torres-collado' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.861358\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'laura maría compañ-gabucio' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.861788\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'sandra gonzález-palacios' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.862152\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'leyre notario-barandiaran' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.862506\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'alejandro oncina-cánovas' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.863046\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'jesús vioque' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.863451\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'manuela garcía-de la hera' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.863846\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'publication' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.864353\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'nutrients 2021, 13, 1241' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.864711\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'study' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.865097\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'valencia nutrition study' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.865618\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'diet' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.866079\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mediterranean diet' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.866514\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'health condition' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.866917\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cardiovascular disease' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.867358\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cancer' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.867809\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'location' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.868166\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'spain' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.868517\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'behavior' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.868864\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'coffee consumption' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.869274\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'chemical compound' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.869552\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'polyphenols' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.869921\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'methodology' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.870436\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'food frequency questionnaire' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.870776\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'statistical method' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.871113\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cox regression models' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.871473\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'health outcome' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.871982\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mortality' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.872297\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'research method' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.872635\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'meta-analysis' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.873071\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'health effect' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.873456\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'antioxidant effects' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.874002\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'eureye-spain study' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.874312\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'health metric' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.874779\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'population group' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.875212\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'coffee drinkers' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.875646\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'non-drinkers' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.876161\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'participants aged 20 years and above' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.876497\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'diabetes' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.876881\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'high cholesterol' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.877307\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'hypertension' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.877800\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'lifestyle factor' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.878190\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'physical activity' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.878605\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'tv watching' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.878979\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'sleeping time' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.879320\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'study period' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.879653\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'follow-up at 6 years' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.880007\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'follow-up at 12 years' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.880342\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'follow-up at 18 years' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.880661\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'outcome' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.880998\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'metric' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.881318\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'person-years' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.881737\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'research' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.882254\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'coffee consumption study' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.882621\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'population' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.882883\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mediterranean population' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.883190\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'compound' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.883511\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'caffeine' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.883793\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'chlorogenic acid' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.884277\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cancer mortality' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.884620\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'all-cause mortality' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.884959\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cvd mortality' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.885307\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'antioxidants' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.885930\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'research study' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.886296\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'torres-collado et al.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.886622\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'navarro et al.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.886932\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'ruggiero et al.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.887227\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'quiles and vioque' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.887549\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'buckland et al.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.887947\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'trichopoulou et al. (1995)' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.888222\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'trichopoulou et al. (2003)' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.888545\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'database' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.888882\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'usda national nutrient database' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.889179\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'malerba et al.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.889405\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'je and giovannucci' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.889677\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'grosso et al. (2016)' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.889996\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'park et al.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.890306\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'gunter et al.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.890656\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'sado et al.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.891071\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'dinu et al.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.891431\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'happonen et al.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.891718\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'yu et al.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.892014\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'gonzalez de mejia' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.892288\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'yamagata' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.892659\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'gökcen and sanlier' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.892965\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'machado-fragua et al.' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.893368\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'michael f. mendoza' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.893684\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'ralf martz sulague' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.893939\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'therese posas-mendoza' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.894181\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'carl j. lavie' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.894540\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'concept' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.894764\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'cardiovascular health' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.895186\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'heart failure' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.895586\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'atrial fibrillation' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.895927\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'coronary heart disease' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.896211\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'diterpenes' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.896419\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'filtered coffee' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.896655\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'unfiltered coffee' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.897059\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'phenolic acid' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.897302\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'caffeine metabolism' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.897520\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'date' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.897771\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for '2023' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.898104\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'mendoza, mf' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.898394\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'condition' in category 'classes'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.898686\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'diabetes mellitus' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:24:53.898918\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mNo close match found for 'coronary artery risk development in young adults study 2020' in category 'individuals'\u001b[0m [\u001b[0m\u001b[1m\u001b[34mOntologyAdapter\u001b[0m]\u001b[0m\u001b[92m20:24:55 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:56 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:57 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:57 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:24:58 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\n", "\u001b[2m2025-06-18T18:24:58.280117\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\u001b[92m20:24:58 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:58 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:58 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:58 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:58 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:24:58 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:25:01 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:01 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:01 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:01 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:02 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:02 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:05 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:05 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:05 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:05 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:06 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\n", "\u001b[2m2025-06-18T18:25:06.543776\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task started: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\u001b[92m20:25:07 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:08 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:09 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:10 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:11 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\n", "\u001b[2m2025-06-18T18:25:12.120408\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `add_data_points`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:25:12.120848\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `summarize_text`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:25:12.121088\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `extract_graph_from_data`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:25:12.121357\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mAsync Generator task completed: `extract_chunks_from_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:25:12.121589\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `check_permissions_on_dataset`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:25:12.121840\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mCoroutine task completed: `classify_documents`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks_base\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:25:12.122082\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mPipeline run completed: `63d064a5-2884-5c10-9aeb-38e16d5955ea`\u001b[0m [\u001b[0m\u001b[1m\u001b[34mrun_tasks(tasks: [Task], data)\u001b[0m]\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:12 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:13 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:13 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:14 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:14 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:14 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:15 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:15 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:25:17 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:17 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:17 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:17 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:17 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:17 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:17 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:17 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:17 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:17 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:18 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:18 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:18 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:18 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:18 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:18 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:18 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:18 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:18 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:18 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:18 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:18 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:19 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:20 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:20 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:25:22 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:22 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:23 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:24 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:24 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:25:27 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:27 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:27 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:27 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:27 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/text-embedding-3-large\n", "\u001b[1mselected model name for cost calculation: openai/text-embedding-3-large\u001b[0m\u001b[92m20:25:28 - LiteLLM:INFO\u001b[0m: utils.py:3101 - \n", "LiteLLM completion() model= gpt-5-mini; provider = openai\n", "\u001b[1m\n", "LiteLLM completion() model= gpt-5-mini; provider = openai\u001b[0m\u001b[92m20:25:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m\u001b[92m20:25:30 - LiteLLM:INFO\u001b[0m: cost_calculator.py:655 - selected model name for cost calculation: openai/gpt-5-mini-2024-07-18\n", "\u001b[1mselected model name for cost calculation: openai/gpt-5-mini-2024-07-18\u001b[0m" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Q: What are common risk factors for Type 2 Diabetes?\n", "A: ['Common risk factors for Type 2 Diabetes include:\\n1. Obesity (high body mass index)\\n2. High cholesterol levels\\n3. Sedentary lifestyle (low physical activity)\\n4. Poor diet choices, particularly low adherence to healthy diets like the Mediterranean diet\\n5. Age (usually occurs in adults)\\n6. Family history of diabetes\\n7. Smoking and alcohol consumption.']\n", "\n", "Q: What preventive measures reduce the risk of Hypertension?\n", "A: ['Preventive measures to reduce the risk of hypertension include moderate coffee consumption, which is linked to lower hypertension, improved cardiovascular health, and reduced incidence of atrial fibrillation. Additionally, antioxidants found in foods can also have protective effects.']\n", "\n", "Q: What symptoms indicate possible Cardiovascular Disease?\n", "A: ['Possible symptoms that may indicate cardiovascular disease include hypertension (consistently elevated blood pressure) and heart failure (a chronic condition in which the heart does not pump blood as well as it should). Additionally, high cholesterol is a health condition associated with an increased risk of cardiovascular disease.']\n", "\n", "Q: What diseases are associated with Obesity?\n", "A: ['Diseases associated with obesity include hypertension, diabetes mellitus, heart failure, high cholesterol, and cardiovascular disease.']\n", "\n" ] } ], "source": [ "# Run without ontology\n", "print(\"\\n--- Results WITHOUT ontology ---\\n\")\n", "await run_pipeline()\n", "answers_without = await query_pipeline(questions)\n", "for q, a in zip(questions, answers_without):\n", " print(f\"Q: {q}\\nA: {a}\\n\")" ] }, { "cell_type": "markdown", "id": "c60533d2423acdb0", "metadata": {}, "source": [ "## Visualizing the Knowledge Graph\n", "\n", "Let's visualize how our ontology connects different medical concepts:" ] }, { "cell_type": "code", "execution_count": 6, "id": "36ee2a360f47a054", "metadata": { "ExecuteTime": { "end_time": "2025-04-09T15:25:33.512697Z", "start_time": "2025-04-09T15:25:33.471854Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\n", "\u001b[2m2025-06-18T18:25:30.641928\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mGraph visualization saved as /Users/borisarzentar/graph_visualization.html\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m\n", "\u001b[2m2025-06-18T18:25:30.642469\u001b[0m [\u001b[32m\u001b[1minfo \u001b[0m] \u001b[1mThe HTML file has been stored on your home directory! Navigate there with cd ~\u001b[0m [\u001b[0m\u001b[1m\u001b[34mcognee.shared.logging_utils\u001b[0m]\u001b[0m" ] }, { "data": { "text/plain": [ "'\\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n\\n \\n \\n \\n \\n \\n '" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from cognee.api.v1.visualize import visualize_graph\n", "await visualize_graph()" ] }, { "cell_type": "markdown", "id": "ff39326921b75273", "metadata": {}, "source": [ "## Understanding the Results\n", "\n", "The demonstration above shows how ontologies enhance our analysis by:\n", "\n", "1. **Making Connections**: \n", " - Linking related medical concepts even when not explicitly stated\n", " - Identifying relationships between symptoms, diseases, and risk factors\n", "\n", "2. **Standardizing Terms**: \n", " - Unifying different ways of referring to the same medical condition\n", " - Ensuring consistent terminology across documents\n", "\n", "3. **Enabling Inference**: \n", " - Drawing conclusions based on ontological relationships\n", " - Discovering implicit connections in the data\n", "\n", "## Next Steps\n", "\n", "To learn more about Cognee and ontologies:\n", "1. Check out the [Cognee documentation](https://docs.cognee.ai/)\n", "2. Explore more examples in the `examples` directory\n", "3. Try creating your own domain-specific ontology\n", "\n", "Remember to:\n", "- Place your scientific papers in the appropriate directory\n", "- Update the ontology path to point to your .owl file\n", "- Replace the API key with your own OpenAI key" ] }, { "cell_type": "code", "execution_count": null, "id": "8d2a0fe555a7bc0f", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 }