{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Cognee GraphRAG with Multimedia files" ] }, { "cell_type": "markdown", "metadata": { "vscode": { "languageId": "plaintext" } }, "source": [ "## Load Data\n", "\n", "We will use a few sample multimedia files which we have on GitHub for easy access." ] }, { "metadata": {}, "cell_type": "code", "outputs": [], "execution_count": null, "source": [ "import os\n", "import pathlib\n", "\n", "# cognee knowledge graph will be created based on the text\n", "# and description of these files\n", "mp3_file_path = os.path.join(\n", " os.path.abspath(\"\"),\n", " \"../\",\n", " \"examples/data/multimedia/text_to_speech.mp3\",\n", ")\n", "png_file_path = os.path.join(\n", " os.path.abspath(\"\"),\n", " \"../\",\n", " \"examples/data/multimedia/example.png\",\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set environment variables" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "# Setting environment variables\n", "if \"GRAPHISTRY_USERNAME\" not in os.environ:\n", " os.environ[\"GRAPHISTRY_USERNAME\"] = \"\"\n", "\n", "if \"GRAPHISTRY_PASSWORD\" not in os.environ:\n", " os.environ[\"GRAPHISTRY_PASSWORD\"] = \"\"\n", "\n", "if \"LLM_API_KEY\" not in os.environ:\n", " os.environ[\"LLM_API_KEY\"] = \"\"\n", "\n", "# \"neo4j\" or \"networkx\"\n", "os.environ[\"GRAPH_DATABASE_PROVIDER\"] = \"networkx\"\n", "# Not needed if using networkx\n", "# os.environ[\"GRAPH_DATABASE_URL\"]=\"\"\n", "# os.environ[\"GRAPH_DATABASE_USERNAME\"]=\"\"\n", "# os.environ[\"GRAPH_DATABASE_PASSWORD\"]=\"\"\n", "\n", "# \"pgvector\", \"qdrant\", \"weaviate\" or \"lancedb\"\n", "os.environ[\"VECTOR_DB_PROVIDER\"] = \"lancedb\"\n", "# Not needed if using \"lancedb\" or \"pgvector\"\n", "# os.environ[\"VECTOR_DB_URL\"]=\"\"\n", "# os.environ[\"VECTOR_DB_KEY\"]=\"\"\n", "\n", "# Relational Database provider \"sqlite\" or \"postgres\"\n", "os.environ[\"DB_PROVIDER\"] = \"sqlite\"\n", "\n", "# Database name\n", "os.environ[\"DB_NAME\"] = \"cognee_db\"\n", "\n", "# Postgres specific parameters (Only if Postgres or PGVector is used)\n", "# os.environ[\"DB_HOST\"]=\"127.0.0.1\"\n", "# os.environ[\"DB_PORT\"]=\"5432\"\n", "# os.environ[\"DB_USERNAME\"]=\"cognee\"\n", "# os.environ[\"DB_PASSWORD\"]=\"cognee\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run Cognee with multimedia files" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import cognee\n", "\n", "# Create a clean slate for cognee -- reset data and system state\n", "await cognee.prune.prune_data()\n", "await cognee.prune.prune_system(metadata=True)\n", "\n", "# Add multimedia files and make them available for cognify\n", "await cognee.add([mp3_file_path, png_file_path])\n", "\n", "# Create knowledge graph with cognee\n", "await cognee.cognify()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Query Cognee for summaries related to multimedia files" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from cognee.api.v1.search import SearchType\n", "\n", "# Query cognee for summaries of the data in the multimedia files\n", "search_results = await cognee.search(\n", " query_type=SearchType.SUMMARIES,\n", " query_text=\"What is in the multimedia files?\",\n", ")\n", "\n", "# Display search results\n", "for result_text in search_results:\n", " print(result_text)" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.6" } }, "nbformat": 4, "nbformat_minor": 2 }