# cognee Make data processing for LLMs easy

Cognee logo

Open-source framework for creating knowledge graphs and data models for LLMs.

cognee forks cognee stars cognee pull-requests cognee releases

[//]: # (

) [//]: # ( Share cognee Repository) [//]: # (

) [//]: # (

) [//]: # ( ) [//]: # ( Follow Cognee) [//]: # ( ) [//]: # ( ) [//]: # ( Share on Telegram) [//]: # ( ) [//]: # ( ) [//]: # ( ) [//]: # ( ) [//]: # ( ) [//]: # ( Share on Reddit) [//]: # ( ) [//]: # ( ) [//]: # ( ) [//]: # ( ) [//]: # ( ) [//]: # ( Buy Me A Coffee) [//]: # ( ) [//]: # (

) [//]: # () [//]: # (
) [//]: # () [//]: # ([Star us on Github!](https://www.github.com/topoteretes/cognee)) [//]: # () [//]: # (Cognee runs in iterations, from POC towards production-ready code.) ## 🚀 It's alive

Try it yourself on Whatsapp with one of our partners by typing `/save {content you want to save}` followed by `/query {knowledge you saved previously}`

## 📦 Installation With pip: ```bash pip install cognee ``` With poetry: ```bash poetry add cognee ``` ## 💻 Usage Check out our demo notebook [here](cognee%20-%20Get%20Started.ipynb) - Set OpenAI API Key as an environment variable ``` import os # Setting an environment variable os.environ['OPENAI_API_KEY'] = '' ``` - Add a new piece of information to storage ``` import cognee cognee.add(absolute_data_path, dataset_name) ``` - Use LLMs and cognee to create graphs ``` cognee.cognify(dataset_name) ``` - Render the graph after adding your Graphistry credentials to .env ``` graph_url = await render_graph(graph, graph_type = "networkx") print(graph_url) ``` - Query the graph for a piece of information ``` query_params = { SearchType.SIMILARITY: {'query': 'your search query here'} } cognee.search(graph, query_params) ``` ## Demo [](https://www.youtube.com/watch?v=yjParvJVgPI "Learn about cognee: 55") ## Architecture ### How Cognee Enhances Your Contextual Memory Our framework for the OpenAI, Graph (Neo4j) and Vector (Weaviate) databases introduces three key enhancements: - Query Classifiers: Navigate information graph using Pydantic OpenAI classifiers. - Document Topology: Structure and store documents in public and private domains. - Personalized Context: Provide a context object to the LLM for a better response. ![Image](assets/architecture.png)