import os import pathlib import asyncio import cognee from cognee.modules.search.types import SearchType async def main(): """ Example script demonstrating how to use Cognee with FalkorDB This example: 1. Configures Cognee to use FalkorDB as graph database 2. Sets up data directories 3. Adds sample data to Cognee 4. Processes (cognifies) the data 5. Performs different types of searches """ # Configure FalkorDB as the graph database provider cognee.config.set_graph_db_config( { "graph_database_url": "localhost", # FalkorDB URL (using Redis protocol) "graph_database_port": 6379, "graph_database_provider": "falkordb", } ) # Set up data directories for storing documents and system files # You should adjust these paths to your needs current_dir = pathlib.Path(__file__).parent data_directory_path = str(current_dir / "data_storage") cognee.config.data_root_directory(data_directory_path) cognee_directory_path = str(current_dir / "cognee_system") cognee.config.system_root_directory(cognee_directory_path) # Clean any existing data (optional) await cognee.prune.prune_data() await cognee.prune.prune_system(metadata=True) # Create a dataset dataset_name = "falkordb_example" # Add sample text to the dataset sample_text = """FalkorDB is a graph database that evolved from RedisGraph. It is focused on providing high-performance graph operations. FalkorDB uses sparse adjacency matrices to represent the graph data structure. It supports the Cypher query language for querying graph data. FalkorDB can be integrated with vector search capabilities for AI applications. It provides a Redis module, allowing users to leverage Redis's features alongside graph capabilities.""" # Add the sample text to the dataset await cognee.add([sample_text], dataset_name) # Process the added document to extract knowledge await cognee.cognify([dataset_name]) # Now let's perform some searches # 1. Search for insights related to "FalkorDB" insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="FalkorDB") print("\nInsights about FalkorDB:") for result in insights_results: print(f"- {result}") # 2. Search for text chunks related to "graph database" chunks_results = await cognee.search( query_type=SearchType.CHUNKS, query_text="graph database", datasets=[dataset_name] ) print("\nChunks about graph database:") for result in chunks_results: print(f"- {result}") # 3. Get graph completion related to databases graph_completion_results = await cognee.search( query_type=SearchType.GRAPH_COMPLETION, query_text="database" ) print("\nGraph completion for databases:") for result in graph_completion_results: print(f"- {result}") # Clean up (optional) # await cognee.prune.prune_data() # await cognee.prune.prune_system(metadata=True) if __name__ == "__main__": asyncio.run(main())