{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "os.environ[\"GRAPHISTRY_USERNAME\"] = input(\"Please enter your graphistry username\")\n", "os.environ[\"GRAPHISTRY_PASSWORD\"] = input(\"Please enter your graphistry password\")\n", "os.environ[\"OPENAI_API_KEY\"] = input(\"Please enter your OpenAI API key\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "import pathlib\n", "import cognee\n", "from cognee.infrastructure.databases.relational import create_db_and_tables\n", "\n", "notebook_path = os.path.abspath(\"\")\n", "data_directory_path = str(\n", " pathlib.Path(os.path.join(notebook_path, \".data_storage/code_graph\")).resolve()\n", ")\n", "cognee.config.data_root_directory(data_directory_path)\n", "cognee_directory_path = str(\n", " pathlib.Path(os.path.join(notebook_path, \".cognee_system/code_graph\")).resolve()\n", ")\n", "cognee.config.system_root_directory(cognee_directory_path)\n", "\n", "await cognee.prune.prune_data()\n", "await cognee.prune.prune_system(metadata=True)\n", "\n", "await create_db_and_tables()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from os import path\n", "from pathlib import Path\n", "from cognee.infrastructure.files.storage import LocalStorage\n", "import git\n", "\n", "notebook_path = path.abspath(\"\")\n", "repo_clone_location = path.join(notebook_path, \".data/graphrag\")\n", "\n", "LocalStorage.remove_all(repo_clone_location)\n", "\n", "git.Repo.clone_from(\n", " \"git@github.com:microsoft/graphrag.git\",\n", " Path(repo_clone_location),\n", " branch=\"main\",\n", " single_branch=True,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from cognee.tasks.repo_processor import (\n", " get_repo_file_dependencies,\n", ")\n", "from cognee.tasks.storage import add_data_points\n", "from cognee.modules.pipelines.tasks.Task import Task\n", "\n", "detailed_extraction = True\n", "\n", "tasks = [\n", " Task(get_repo_file_dependencies, detailed_extraction=detailed_extraction),\n", " Task(add_data_points, task_config={\"batch_size\": 100 if detailed_extraction else 500}),\n", "]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from cognee.modules.pipelines import run_tasks\n", "from uuid import uuid5, NAMESPACE_OID\n", "\n", "pipeline = run_tasks(tasks, uuid5(NAMESPACE_OID, repo_clone_location), repo_clone_location, \"code_graph_pipeline\")\n", "\n", "async for result in pipeline:\n", " print(result)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from cognee.shared.utils import render_graph\n", "\n", "await render_graph()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Let's check the evaluations" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from cognee import search, SearchType\n", "\n", "results = await search(query_type=SearchType.CODE, query_text=\"def create_graphrag_config\")\n", "\n", "print(results)\n" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.8" } }, "nbformat": 4, "nbformat_minor": 2 }