from deepeval.dataset import EvaluationDataset from deepeval.synthesizer import Synthesizer import dotenv from deepeval.test_case import LLMTestCase # import pytest # from deepeval import assert_test from deepeval.metrics import AnswerRelevancyMetric dotenv.load_dotenv() # synthesizer = Synthesizer() # synthesizer.generate_goldens_from_docs( # document_paths=['natural_language_processing.txt', 'soldiers_home.pdf', 'trump.txt'], # max_goldens_per_document=5, # num_evolutions=5, # include_expected_output=True, # enable_breadth_evolve=True, # ) # # synthesizer.save_as( # file_type='json', # or 'csv' # directory="./synthetic_data" # ) dataset = EvaluationDataset() dataset.generate_goldens_from_docs( document_paths=["natural_language_processing.txt", "soldiers_home.pdf", "trump.txt"], max_goldens_per_document=10, num_evolutions=5, enable_breadth_evolve=True, ) print(dataset.goldens) print(dataset) answer_relevancy_metric = AnswerRelevancyMetric(threshold=0.5) # from deepeval import evaluate # evaluate(dataset, [answer_relevancy_metric])