import logging from langchain.prompts import ChatPromptTemplate import json # TO DO, ADD ALL CLASSIFIERS HERE from langchain.chains import create_extraction_chain from langchain.chat_models import ChatOpenAI from ..config import Config from ..database.vectordb.loaders.loaders import _document_loader config = Config() config.load() OPENAI_API_KEY = config.openai_key from langchain.document_loaders import TextLoader from langchain.document_loaders import DirectoryLoader async def classify_user_input(query, input_type): llm = ChatOpenAI(temperature=0, model=config.model) prompt_classify = ChatPromptTemplate.from_template( """You are a classifier. Determine with a True or False if the following input: {query}, is relevant for the following memory category: {input_type}""" ) json_structure = [ { "name": "classifier", "description": "Classification", "parameters": { "type": "object", "properties": { "InputClassification": { "type": "boolean", "description": "The classification of the input", } }, "required": ["InputClassification"], }, } ] chain_filter = prompt_classify | llm.bind( function_call={"name": "classifier"}, functions=json_structure ) classifier_output = await chain_filter.ainvoke( {"query": query, "input_type": input_type} ) arguments_str = classifier_output.additional_kwargs["function_call"]["arguments"] logging.info("This is the arguments string %s", arguments_str) arguments_dict = json.loads(arguments_str) logging.info("Relevant summary is %s", arguments_dict.get("DocumentSummary", None)) InputClassification = arguments_dict.get("InputClassification", None) logging.info("This is the classification %s", InputClassification) return InputClassification