import argparse import asyncio import json import statistics from pathlib import Path import deepeval.metrics import wget from deepeval.dataset import EvaluationDataset from deepeval.test_case import LLMTestCase from tqdm import tqdm import cognee import evals.deepeval_metrics from cognee.api.v1.search import SearchType from cognee.base_config import get_base_config from cognee.infrastructure.llm.get_llm_client import get_llm_client from cognee.infrastructure.llm.prompts import read_query_prompt, render_prompt async def answer_without_cognee(instance): args = { "question": instance["question"], "context": instance["context"], } user_prompt = render_prompt("context_for_question.txt", args) system_prompt = read_query_prompt("answer_hotpot_question.txt") llm_client = get_llm_client() answer_prediction = await llm_client.acreate_structured_output( text_input=user_prompt, system_prompt=system_prompt, response_model=str, ) return answer_prediction async def answer_with_cognee(instance): await cognee.prune.prune_data() await cognee.prune.prune_system(metadata=True) for title, sentences in instance["context"]: await cognee.add("\n".join(sentences), dataset_name="HotPotQA") for n in range(1, 4): print(n) await cognee.cognify("HotPotQA") search_results = await cognee.search(SearchType.INSIGHTS, query_text=instance["question"]) search_results_second = await cognee.search( SearchType.SUMMARIES, query_text=instance["question"] ) search_results = search_results + search_results_second args = { "question": instance["question"], "context": search_results, } user_prompt = render_prompt("context_for_question.txt", args) system_prompt = read_query_prompt("answer_hotpot_using_cognee_search.txt") llm_client = get_llm_client() answer_prediction = await llm_client.acreate_structured_output( text_input=user_prompt, system_prompt=system_prompt, response_model=str, ) return answer_prediction async def eval_answers(instances, answers, eval_metric): test_cases = [] for instance, answer in zip(instances, answers): test_case = LLMTestCase( input=instance["question"], actual_output=answer, expected_output=instance["answer"] ) test_cases.append(test_case) eval_set = EvaluationDataset(test_cases) eval_results = eval_set.evaluate([eval_metric]) return eval_results async def eval_on_hotpotQA(answer_provider, num_samples, eval_metric): base_config = get_base_config() data_root_dir = base_config.data_root_directory if not Path(data_root_dir).exists(): Path(data_root_dir).mkdir() filepath = data_root_dir / Path("hotpot_dev_fullwiki_v1.json") if not filepath.exists(): url = "http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_dev_fullwiki_v1.json" wget.download(url, out=data_root_dir) with open(filepath, "r") as file: dataset = json.load(file) instances = dataset if not num_samples else dataset[:num_samples] answers = [] for instance in tqdm(instances, desc="Getting answers"): answer = await answer_provider(instance) answers.append(answer) eval_results = await eval_answers(instances, answers, eval_metric) avg_score = statistics.mean( [result.metrics_data[0].score for result in eval_results.test_results] ) return avg_score if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--with_cognee", action="store_true") parser.add_argument("--num_samples", type=int, default=500) parser.add_argument( "--metric", type=str, default="correctness_metric", help="Valid options are Deepeval metrics (e.g. AnswerRelevancyMetric) \ and metrics defined in evals/deepeval_metrics.py, e.g. f1_score_metric", ) args = parser.parse_args() try: metric_cls = getattr(deepeval.metrics, args.metric) metric = metric_cls() except AttributeError: metric = getattr(evals.deepeval_metrics, args.metric) if isinstance(metric, type): metric = metric() if args.with_cognee: answer_provider = answer_with_cognee else: answer_provider = answer_without_cognee avg_score = asyncio.run(eval_on_hotpotQA(answer_provider, args.num_samples, metric)) print(f"Average {args.metric}: {avg_score}")