Compare commits

...
Sign in to create a new pull request.

6 commits

Author SHA1 Message Date
Igor Ilic
382b7ec146
Merge branch 'dev' into cognify-speed-optimization 2025-10-14 18:59:35 +02:00
Igor Ilic
84a23756f5 fix: Change chunk_size ot batch_size for temporal task 2025-10-14 14:25:38 +02:00
Igor Ilic
eb631a23ad refactor: set default numbers that are more reasonable 2025-10-14 13:57:41 +02:00
Igor Ilic
13d1133680 chore: Change comments 2025-10-10 17:14:10 +02:00
Igor Ilic
757d745b5d refactor: Optimize cognification speed 2025-10-10 17:12:09 +02:00
Igor Ilic
abfcbc69d6 refactor: Have embedding calls run in async gather 2025-10-10 15:36:36 +02:00
4 changed files with 35 additions and 24 deletions

View file

@ -269,13 +269,13 @@ async def get_default_tasks( # TODO: Find out a better way to do this (Boris's
graph_model=graph_model,
config=config,
custom_prompt=custom_prompt,
task_config={"batch_size": 10},
task_config={"batch_size": 20},
), # Generate knowledge graphs from the document chunks.
Task(
summarize_text,
task_config={"batch_size": 10},
task_config={"batch_size": 20},
),
Task(add_data_points, task_config={"batch_size": 10}),
Task(add_data_points, task_config={"batch_size": 20}),
]
return default_tasks
@ -311,7 +311,7 @@ async def get_temporal_tasks(
max_chunk_size=chunk_size or get_max_chunk_tokens(),
chunker=chunker,
),
Task(extract_events_and_timestamps, task_config={"chunk_size": 10}),
Task(extract_events_and_timestamps, task_config={"batch_size": 10}),
Task(extract_knowledge_graph_from_events),
Task(add_data_points, task_config={"batch_size": 10}),
]

View file

@ -24,9 +24,8 @@ class EmbeddingConfig(BaseSettings):
model_config = SettingsConfigDict(env_file=".env", extra="allow")
def model_post_init(self, __context) -> None:
# If embedding batch size is not defined use 2048 as default for OpenAI and 100 for all other embedding models
if not self.embedding_batch_size and self.embedding_provider.lower() == "openai":
self.embedding_batch_size = 2048
self.embedding_batch_size = 1024
elif not self.embedding_batch_size:
self.embedding_batch_size = 100

View file

@ -1,6 +1,6 @@
from cognee.shared.logging_utils import get_logger
import asyncio
from cognee.infrastructure.databases.exceptions import EmbeddingException
from cognee.shared.logging_utils import get_logger
from cognee.infrastructure.databases.vector import get_vector_engine
from cognee.infrastructure.engine import DataPoint
@ -33,18 +33,23 @@ async def index_data_points(data_points: list[DataPoint]):
indexed_data_point.metadata["index_fields"] = [field_name]
index_points[index_name].append(indexed_data_point)
for index_name_and_field, indexable_points in index_points.items():
first_occurence = index_name_and_field.index("_")
index_name = index_name_and_field[:first_occurence]
field_name = index_name_and_field[first_occurence + 1 :]
try:
# In case the amount of indexable points is too large we need to send them in batches
batch_size = vector_engine.embedding_engine.get_batch_size()
for i in range(0, len(indexable_points), batch_size):
batch = indexable_points[i : i + batch_size]
await vector_engine.index_data_points(index_name, field_name, batch)
except EmbeddingException as e:
logger.warning(f"Failed to index data points for {index_name}.{field_name}: {e}")
tasks: list[asyncio.Task] = []
batch_size = vector_engine.embedding_engine.get_batch_size()
for index_name_and_field, points in index_points.items():
first = index_name_and_field.index("_")
index_name = index_name_and_field[:first]
field_name = index_name_and_field[first + 1 :]
# Create embedding requests per batch to run in parallel later
for i in range(0, len(points), batch_size):
batch = points[i : i + batch_size]
tasks.append(
asyncio.create_task(vector_engine.index_data_points(index_name, field_name, batch))
)
# Run all embedding requests in parallel
await asyncio.gather(*tasks)
return data_points

View file

@ -1,3 +1,5 @@
import asyncio
from cognee.modules.engine.utils.generate_edge_id import generate_edge_id
from cognee.shared.logging_utils import get_logger
from collections import Counter
@ -76,15 +78,20 @@ async def index_graph_edges(
indexed_data_point.metadata["index_fields"] = [field_name]
index_points[index_name].append(indexed_data_point)
# Get maximum batch size for embedding model
batch_size = vector_engine.embedding_engine.get_batch_size()
tasks: list[asyncio.Task] = []
for index_name, indexable_points in index_points.items():
index_name, field_name = index_name.split(".")
# Get maximum batch size for embedding model
batch_size = vector_engine.embedding_engine.get_batch_size()
# We save the data in batches of {batch_size} to not put a lot of pressure on the database
# Create embedding tasks to run in parallel later
for start in range(0, len(indexable_points), batch_size):
batch = indexable_points[start : start + batch_size]
await vector_engine.index_data_points(index_name, field_name, batch)
tasks.append(vector_engine.index_data_points(index_name, field_name, batch))
# Start all embedding tasks and wait for completion
await asyncio.gather(*tasks)
return None