fix: Add getting started tutorial to git (#870)
<!-- .github/pull_request_template.md --> ## Description <!-- Provide a clear description of the changes in this PR --> ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin. --------- Co-authored-by: hajdul88 <52442977+hajdul88@users.noreply.github.com>
This commit is contained in:
parent
ce3a37f61b
commit
ecbabbd261
12 changed files with 770 additions and 6 deletions
|
|
@ -1,6 +0,0 @@
|
|||
# put your configuration values here
|
||||
|
||||
[runtime]
|
||||
log_level = "WARNING" # the system log level of dlt
|
||||
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
|
||||
dlthub_telemetry = false
|
||||
|
|
@ -63,6 +63,7 @@ More on [use-cases](https://docs.cognee.ai/use-cases) and [evals](https://github
|
|||
Get started quickly with a Google Colab <a href="https://colab.research.google.com/drive/1jHbWVypDgCLwjE71GSXhRL3YxYhCZzG1?usp=sharing">notebook</a> , <a href="https://deepnote.com/workspace/cognee-382213d0-0444-4c89-8265-13770e333c02/project/cognee-demo-78ffacb9-5832-4611-bb1a-560386068b30/notebook/Notebook-1-75b24cda566d4c24ab348f7150792601?utm_source=share-modal&utm_medium=product-shared-content&utm_campaign=notebook&utm_content=78ffacb9-5832-4611-bb1a-560386068b30">Deepnote notebook</a> or <a href="https://github.com/topoteretes/cognee-starter">starter repo</a>
|
||||
|
||||
|
||||
|
||||
## Contributing
|
||||
Your contributions are at the core of making this a true open source project. Any contributions you make are **greatly appreciated**. See [`CONTRIBUTING.md`](CONTRIBUTING.md) for more information.
|
||||
|
||||
|
|
|
|||
19
cognee-starter-kit/.env.template
Normal file
19
cognee-starter-kit/.env.template
Normal file
|
|
@ -0,0 +1,19 @@
|
|||
# In case you choose to use OpenAI provider, just adjust the model and api_key.
|
||||
LLM_API_KEY=""
|
||||
LLM_MODEL="openai/gpt-4o-mini"
|
||||
LLM_PROVIDER="openai"
|
||||
# Not needed if you use OpenAI
|
||||
LLM_ENDPOINT=""
|
||||
LLM_API_VERSION=""
|
||||
|
||||
# In case you choose to use OpenAI provider, just adjust the model and api_key.
|
||||
EMBEDDING_API_KEY=""
|
||||
EMBEDDING_MODEL="openai/text-embedding-3-large"
|
||||
EMBEDDING_PROVIDER="openai"
|
||||
# Not needed if you use OpenAI
|
||||
EMBEDDING_ENDPOINT=""
|
||||
EMBEDDING_API_VERSION=""
|
||||
|
||||
|
||||
GRAPHISTRY_USERNAME=""
|
||||
GRAPHISTRY_PASSWORD=""
|
||||
196
cognee-starter-kit/.gitignore
vendored
Normal file
196
cognee-starter-kit/.gitignore
vendored
Normal file
|
|
@ -0,0 +1,196 @@
|
|||
.data
|
||||
.env
|
||||
.local.env
|
||||
.prod.env
|
||||
cognee/.data/
|
||||
|
||||
code_pipeline_output*/
|
||||
|
||||
*.lance/
|
||||
.DS_Store
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
full_run.ipynb
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Cognee logs directory - keep directory, ignore contents
|
||||
logs/*
|
||||
!logs/.gitkeep
|
||||
!logs/README.md
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/#use-with-ide
|
||||
.pdm.toml
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.env.local
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
.idea/
|
||||
|
||||
.vscode/
|
||||
cognee/data/
|
||||
cognee/cache/
|
||||
|
||||
# Default cognee system directory, used in development
|
||||
.cognee_system/
|
||||
.data_storage/
|
||||
.artifacts/
|
||||
.anon_id
|
||||
|
||||
node_modules/
|
||||
|
||||
# Evals
|
||||
SWE-bench_testsample/
|
||||
|
||||
# ChromaDB Data
|
||||
.chromadb_data/
|
||||
98
cognee-starter-kit/README.md
Normal file
98
cognee-starter-kit/README.md
Normal file
|
|
@ -0,0 +1,98 @@
|
|||
|
||||
# Cognee Starter Kit
|
||||
Welcome to the <a href="https://github.com/topoteretes/cognee">cognee</a> Starter Repo! This repository is designed to help you get started quickly by providing a structured dataset and pre-built data pipelines using cognee to build powerful knowledge graphs.
|
||||
|
||||
You can use this repo to ingest, process, and visualize data in minutes.
|
||||
|
||||
By following this guide, you will:
|
||||
|
||||
- Load structured company and employee data
|
||||
- Utilize pre-built pipelines for data processing
|
||||
- Perform graph-based search and query operations
|
||||
- Visualize entity relationships effortlessly on a graph
|
||||
|
||||
# How to Use This Repo 🛠
|
||||
|
||||
## Install uv if you don't have it on your system
|
||||
```
|
||||
pip install uv
|
||||
```
|
||||
## Install dependencies
|
||||
```
|
||||
uv sync
|
||||
```
|
||||
|
||||
## Setup LLM
|
||||
Add environment variables to `.env` file.
|
||||
In case you choose to use OpenAI provider, add just the model and api_key.
|
||||
```
|
||||
LLM_PROVIDER=""
|
||||
LLM_MODEL=""
|
||||
LLM_ENDPOINT=""
|
||||
LLM_API_KEY=""
|
||||
LLM_API_VERSION=""
|
||||
|
||||
EMBEDDING_PROVIDER=""
|
||||
EMBEDDING_MODEL=""
|
||||
EMBEDDING_ENDPOINT=""
|
||||
EMBEDDING_API_KEY=""
|
||||
EMBEDDING_API_VERSION=""
|
||||
```
|
||||
|
||||
Activate the Python environment:
|
||||
```
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
## Run the Default Pipeline
|
||||
|
||||
This script runs the cognify pipeline with default settings. It ingests text data, builds a knowledge graph, and allows you to run search queries.
|
||||
|
||||
```
|
||||
python src/pipelines/default.py
|
||||
```
|
||||
|
||||
## Run the Low-Level Pipeline
|
||||
|
||||
This script implements its own pipeline with custom ingestion task. It processes the given JSON data about companies and employees, making it searchable via a graph.
|
||||
|
||||
```
|
||||
python src/pipelines/low_level.py
|
||||
```
|
||||
|
||||
## Run the Custom Model Pipeline
|
||||
|
||||
Custom model uses custom pydantic model for graph extraction. This script categorizes programming languages as an example and visualizes relationships.
|
||||
|
||||
```
|
||||
python src/pipelines/custom-model.py
|
||||
```
|
||||
|
||||
## Graph preview
|
||||
|
||||
cognee provides a visualize_graph function that will render the graph for you.
|
||||
|
||||
```
|
||||
graph_file_path = str(
|
||||
pathlib.Path(
|
||||
os.path.join(pathlib.Path(__file__).parent, ".artifacts/graph_visualization.html")
|
||||
).resolve()
|
||||
)
|
||||
await visualize_graph(graph_file_path)
|
||||
```
|
||||
If you want to use tools like Graphistry for graph visualization:
|
||||
- create an account and API key from https://www.graphistry.com
|
||||
- add the following environment variables to `.env` file:
|
||||
```
|
||||
GRAPHISTRY_USERNAME=""
|
||||
GRAPHISTRY_PASSWORD=""
|
||||
```
|
||||
Note: `GRAPHISTRY_PASSWORD` is API key.
|
||||
|
||||
|
||||
# What will you build with cognee?
|
||||
|
||||
- Expand the dataset by adding more structured/unstructured data
|
||||
- Customize the data model to fit your use case
|
||||
- Use the search API to build an intelligent assistant
|
||||
- Visualize knowledge graphs for better insights
|
||||
11
cognee-starter-kit/pyproject.toml
Normal file
11
cognee-starter-kit/pyproject.toml
Normal file
|
|
@ -0,0 +1,11 @@
|
|||
[project]
|
||||
name = "cognee-starter"
|
||||
version = "0.1.1"
|
||||
description = "Starter project which can be harvested for parts"
|
||||
readme = "README.md"
|
||||
|
||||
requires-python = ">=3.10, <=3.13"
|
||||
|
||||
dependencies = [
|
||||
"cognee>=0.1.38",
|
||||
]
|
||||
38
cognee-starter-kit/src/data/companies.json
Normal file
38
cognee-starter-kit/src/data/companies.json
Normal file
|
|
@ -0,0 +1,38 @@
|
|||
[
|
||||
{
|
||||
"name": "TechNova Inc.",
|
||||
"departments": [
|
||||
"Engineering",
|
||||
"Marketing"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "GreenFuture Solutions",
|
||||
"departments": [
|
||||
"Research & Development",
|
||||
"Sales",
|
||||
"Customer Support"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "Skyline Financials",
|
||||
"departments": [
|
||||
"Accounting"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "MediCare Plus",
|
||||
"departments": [
|
||||
"Healthcare",
|
||||
"Administration"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "NextGen Robotics",
|
||||
"departments": [
|
||||
"AI Development",
|
||||
"Manufacturing",
|
||||
"HR"
|
||||
]
|
||||
}
|
||||
]
|
||||
52
cognee-starter-kit/src/data/people.json
Normal file
52
cognee-starter-kit/src/data/people.json
Normal file
|
|
@ -0,0 +1,52 @@
|
|||
[
|
||||
{
|
||||
"name": "John Doe",
|
||||
"company": "TechNova Inc.",
|
||||
"department": "Engineering"
|
||||
},
|
||||
{
|
||||
"name": "Jane Smith",
|
||||
"company": "TechNova Inc.",
|
||||
"department": "Marketing"
|
||||
},
|
||||
{
|
||||
"name": "Alice Johnson",
|
||||
"company": "GreenFuture Solutions",
|
||||
"department": "Sales"
|
||||
},
|
||||
{
|
||||
"name": "Bob Williams",
|
||||
"company": "GreenFuture Solutions",
|
||||
"department": "Customer Support"
|
||||
},
|
||||
{
|
||||
"name": "Michael Brown",
|
||||
"company": "Skyline Financials",
|
||||
"department": "Accounting"
|
||||
},
|
||||
{
|
||||
"name": "Emily Davis",
|
||||
"company": "MediCare Plus",
|
||||
"department": "Healthcare"
|
||||
},
|
||||
{
|
||||
"name": "David Wilson",
|
||||
"company": "MediCare Plus",
|
||||
"department": "Administration"
|
||||
},
|
||||
{
|
||||
"name": "Emma Thompson",
|
||||
"company": "NextGen Robotics",
|
||||
"department": "AI Development"
|
||||
},
|
||||
{
|
||||
"name": "Chris Martin",
|
||||
"company": "NextGen Robotics",
|
||||
"department": "Manufacturing"
|
||||
},
|
||||
{
|
||||
"name": "Sophia White",
|
||||
"company": "NextGen Robotics",
|
||||
"department": "HR"
|
||||
}
|
||||
]
|
||||
92
cognee-starter-kit/src/pipelines/custom-model.py
Normal file
92
cognee-starter-kit/src/pipelines/custom-model.py
Normal file
|
|
@ -0,0 +1,92 @@
|
|||
import os
|
||||
import asyncio
|
||||
import pathlib
|
||||
from cognee import config, add, cognify, search, SearchType, prune, visualize_graph
|
||||
|
||||
# from cognee.shared.utils import render_graph
|
||||
from cognee.low_level import DataPoint
|
||||
|
||||
|
||||
async def main():
|
||||
data_directory_path = str(
|
||||
pathlib.Path(os.path.join(pathlib.Path(__file__).parent, ".data_storage")).resolve()
|
||||
)
|
||||
# Set up the data directory. Cognee will store files here.
|
||||
config.data_root_directory(data_directory_path)
|
||||
|
||||
cognee_directory_path = str(
|
||||
pathlib.Path(os.path.join(pathlib.Path(__file__).parent, ".cognee_system")).resolve()
|
||||
)
|
||||
# Set up the Cognee system directory. Cognee will store system files and databases here.
|
||||
config.system_root_directory(cognee_directory_path)
|
||||
|
||||
# Prune data and system metadata before running, only if we want "fresh" state.
|
||||
await prune.prune_data()
|
||||
await prune.prune_system(metadata=True)
|
||||
|
||||
text = "The Python programming language is widely used in data analysis, web development, and machine learning."
|
||||
|
||||
# Add the text data to Cognee.
|
||||
await add(text)
|
||||
|
||||
# Define a custom graph model for programming languages.
|
||||
class FieldType(DataPoint):
|
||||
name: str = "Field"
|
||||
|
||||
class Field(DataPoint):
|
||||
name: str
|
||||
is_type: FieldType
|
||||
metadata: dict = {"index_fields": ["name"]}
|
||||
|
||||
class ProgrammingLanguageType(DataPoint):
|
||||
name: str = "Programming Language"
|
||||
|
||||
class ProgrammingLanguage(DataPoint):
|
||||
name: str
|
||||
used_in: list[Field] = []
|
||||
is_type: ProgrammingLanguageType
|
||||
metadata: dict = {"index_fields": ["name"]}
|
||||
|
||||
# Cognify the text data.
|
||||
await cognify(graph_model=ProgrammingLanguage)
|
||||
|
||||
# # Get a graphistry url (Register for a free account at https://www.graphistry.com)
|
||||
# url = await render_graph()
|
||||
# print(f"Graphistry URL: {url}")
|
||||
|
||||
# Or use our simple graph preview
|
||||
graph_file_path = str(
|
||||
pathlib.Path(
|
||||
os.path.join(pathlib.Path(__file__).parent, ".artifacts/graph_visualization.html")
|
||||
).resolve()
|
||||
)
|
||||
await visualize_graph(graph_file_path)
|
||||
|
||||
# Completion query that uses graph data to form context.
|
||||
graph_completion = await search(
|
||||
query_text="What is python?", query_type=SearchType.GRAPH_COMPLETION
|
||||
)
|
||||
print("Graph completion result is:")
|
||||
print(graph_completion)
|
||||
|
||||
# Completion query that uses document chunks to form context.
|
||||
rag_completion = await search(
|
||||
query_text="What is Python?", query_type=SearchType.RAG_COMPLETION
|
||||
)
|
||||
print("Completion result is:")
|
||||
print(rag_completion)
|
||||
|
||||
# Query all summaries related to query.
|
||||
summaries = await search(query_text="Python", query_type=SearchType.SUMMARIES)
|
||||
print("Summary results are:")
|
||||
for summary in summaries:
|
||||
print(summary)
|
||||
|
||||
chunks = await search(query_text="Python", query_type=SearchType.CHUNKS)
|
||||
print("Chunk results are:")
|
||||
for chunk in chunks:
|
||||
print(chunk)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
72
cognee-starter-kit/src/pipelines/default.py
Normal file
72
cognee-starter-kit/src/pipelines/default.py
Normal file
|
|
@ -0,0 +1,72 @@
|
|||
import os
|
||||
import asyncio
|
||||
import pathlib
|
||||
from cognee import config, add, cognify, search, SearchType, prune, visualize_graph
|
||||
# from cognee.shared.utils import render_graph
|
||||
|
||||
|
||||
async def main():
|
||||
data_directory_path = str(
|
||||
pathlib.Path(os.path.join(pathlib.Path(__file__).parent, ".data_storage")).resolve()
|
||||
)
|
||||
# Set up the data directory. Cognee will store files here.
|
||||
config.data_root_directory(data_directory_path)
|
||||
|
||||
cognee_directory_path = str(
|
||||
pathlib.Path(os.path.join(pathlib.Path(__file__).parent, ".cognee_system")).resolve()
|
||||
)
|
||||
# Set up the Cognee system directory. Cognee will store system files and databases here.
|
||||
config.system_root_directory(cognee_directory_path)
|
||||
|
||||
# Prune data and system metadata before running, only if we want "fresh" state.
|
||||
await prune.prune_data()
|
||||
await prune.prune_system(metadata=True)
|
||||
|
||||
text = "The Python programming language is widely used in data analysis, web development, and machine learning."
|
||||
|
||||
# Add the text data to Cognee.
|
||||
await add(text)
|
||||
|
||||
# Cognify the text data.
|
||||
await cognify()
|
||||
|
||||
# # Get a graphistry url (Register for a free account at https://www.graphistry.com)
|
||||
# url = await render_graph()
|
||||
# print(f"Graphistry URL: {url}")
|
||||
|
||||
# Or use our simple graph preview
|
||||
graph_file_path = str(
|
||||
pathlib.Path(
|
||||
os.path.join(pathlib.Path(__file__).parent, ".artifacts/graph_visualization.html")
|
||||
).resolve()
|
||||
)
|
||||
await visualize_graph(graph_file_path)
|
||||
|
||||
# Completion query that uses graph data to form context.
|
||||
graph_completion = await search(
|
||||
query_text="What is python?", query_type=SearchType.GRAPH_COMPLETION
|
||||
)
|
||||
print("Graph completion result is:")
|
||||
print(graph_completion)
|
||||
|
||||
# Completion query that uses document chunks to form context.
|
||||
rag_completion = await search(
|
||||
query_text="What is Python?", query_type=SearchType.RAG_COMPLETION
|
||||
)
|
||||
print("Completion result is:")
|
||||
print(rag_completion)
|
||||
|
||||
# Query all summaries related to query.
|
||||
summaries = await search(query_text="Python", query_type=SearchType.SUMMARIES)
|
||||
print("Summary results are:")
|
||||
for summary in summaries:
|
||||
print(summary)
|
||||
|
||||
chunks = await search(query_text="Python", query_type=SearchType.CHUNKS)
|
||||
print("Chunk results are:")
|
||||
for chunk in chunks:
|
||||
print(chunk)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
125
cognee-starter-kit/src/pipelines/low_level.py
Normal file
125
cognee-starter-kit/src/pipelines/low_level.py
Normal file
|
|
@ -0,0 +1,125 @@
|
|||
import os
|
||||
import uuid
|
||||
import json
|
||||
import asyncio
|
||||
import pathlib
|
||||
from cognee import config, prune, search, SearchType, visualize_graph
|
||||
from cognee.low_level import setup, DataPoint
|
||||
from cognee.pipelines import run_tasks, Task
|
||||
from cognee.tasks.storage import add_data_points
|
||||
from cognee.tasks.storage.index_graph_edges import index_graph_edges
|
||||
from cognee.modules.users.methods import get_default_user
|
||||
|
||||
|
||||
class Person(DataPoint):
|
||||
name: str
|
||||
metadata: dict = {"index_fields": ["name"]}
|
||||
|
||||
|
||||
class Department(DataPoint):
|
||||
name: str
|
||||
employees: list[Person]
|
||||
metadata: dict = {"index_fields": ["name"]}
|
||||
|
||||
|
||||
class CompanyType(DataPoint):
|
||||
name: str = "Company"
|
||||
|
||||
|
||||
class Company(DataPoint):
|
||||
name: str
|
||||
departments: list[Department]
|
||||
is_type: CompanyType
|
||||
metadata: dict = {"index_fields": ["name"]}
|
||||
|
||||
|
||||
def ingest_files():
|
||||
companies_file_path = os.path.join(os.path.dirname(__file__), "../data/companies.json")
|
||||
companies = json.loads(open(companies_file_path, "r").read())
|
||||
|
||||
people_file_path = os.path.join(os.path.dirname(__file__), "../data/people.json")
|
||||
people = json.loads(open(people_file_path, "r").read())
|
||||
|
||||
people_data_points = {}
|
||||
departments_data_points = {}
|
||||
|
||||
for person in people:
|
||||
new_person = Person(name=person["name"])
|
||||
people_data_points[person["name"]] = new_person
|
||||
|
||||
if person["department"] not in departments_data_points:
|
||||
departments_data_points[person["department"]] = Department(
|
||||
name=person["department"], employees=[new_person]
|
||||
)
|
||||
else:
|
||||
departments_data_points[person["department"]].employees.append(new_person)
|
||||
|
||||
companies_data_points = {}
|
||||
|
||||
# Create a single CompanyType node, so we connect all companies to it.
|
||||
companyType = CompanyType()
|
||||
|
||||
for company in companies:
|
||||
new_company = Company(name=company["name"], departments=[], is_type=companyType)
|
||||
companies_data_points[company["name"]] = new_company
|
||||
|
||||
for department_name in company["departments"]:
|
||||
if department_name not in departments_data_points:
|
||||
departments_data_points[department_name] = Department(
|
||||
name=department_name, employees=[]
|
||||
)
|
||||
|
||||
new_company.departments.append(departments_data_points[department_name])
|
||||
|
||||
return companies_data_points.values()
|
||||
|
||||
|
||||
async def main():
|
||||
cognee_directory_path = str(
|
||||
pathlib.Path(os.path.join(pathlib.Path(__file__).parent, ".cognee_system")).resolve()
|
||||
)
|
||||
# Set up the Cognee system directory. Cognee will store system files and databases here.
|
||||
config.system_root_directory(cognee_directory_path)
|
||||
|
||||
# Prune system metadata before running, only if we want "fresh" state.
|
||||
await prune.prune_system(metadata=True)
|
||||
|
||||
await setup()
|
||||
|
||||
# Generate a random dataset_id
|
||||
dataset_id = uuid.uuid4()
|
||||
user = await get_default_user()
|
||||
|
||||
pipeline = run_tasks(
|
||||
[
|
||||
Task(ingest_files),
|
||||
Task(add_data_points),
|
||||
],
|
||||
dataset_id,
|
||||
None,
|
||||
user,
|
||||
"demo_pipeline",
|
||||
)
|
||||
|
||||
async for status in pipeline:
|
||||
print(status)
|
||||
|
||||
await index_graph_edges()
|
||||
|
||||
# Or use our simple graph preview
|
||||
graph_file_path = str(
|
||||
os.path.join(os.path.dirname(__file__), ".artifacts/graph_visualization.html")
|
||||
)
|
||||
await visualize_graph(graph_file_path)
|
||||
|
||||
# Completion query that uses graph data to form context.
|
||||
completion = await search(
|
||||
query_text="Who works for GreenFuture Solutions?",
|
||||
query_type=SearchType.GRAPH_COMPLETION,
|
||||
)
|
||||
print("Graph completion result is:")
|
||||
print(completion)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
66
cognee/tests/test_starter_pipelines.py
Normal file
66
cognee/tests/test_starter_pipelines.py
Normal file
|
|
@ -0,0 +1,66 @@
|
|||
import unittest
|
||||
import subprocess
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
class TestPipelines(unittest.TestCase):
|
||||
"""Tests that all pipelines run successfully."""
|
||||
|
||||
def setUp(self):
|
||||
# Ensure we're in the correct directory
|
||||
self.project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
|
||||
self.pipelines_dir = os.path.join(self.project_root, "src", "pipelines")
|
||||
|
||||
# Required environment variables
|
||||
self.required_env_vars = ["LLM_API_KEY", "EMBEDDING_API_KEY"]
|
||||
|
||||
# Check if required environment variables are set
|
||||
missing_vars = [var for var in self.required_env_vars if not os.environ.get(var)]
|
||||
if missing_vars:
|
||||
self.skipTest(f"Missing required environment variables: {', '.join(missing_vars)}")
|
||||
|
||||
def _run_pipeline(self, script_name):
|
||||
"""Helper method to run a pipeline script and return the result."""
|
||||
script_path = os.path.join(self.pipelines_dir, script_name)
|
||||
|
||||
# Use the Python executable from the virtual environment
|
||||
python_exe = os.path.join(self.project_root, ".venv", "bin", "python")
|
||||
if not os.path.exists(python_exe):
|
||||
python_exe = sys.executable
|
||||
|
||||
try:
|
||||
result = subprocess.run(
|
||||
[python_exe, script_path],
|
||||
check=True,
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=300, # 5 minute timeout
|
||||
)
|
||||
return result
|
||||
except subprocess.CalledProcessError as e:
|
||||
self.fail(
|
||||
f"Pipeline {script_name} failed with code {e.returncode}. "
|
||||
f"Stdout: {e.stdout}, Stderr: {e.stderr}"
|
||||
)
|
||||
except subprocess.TimeoutExpired:
|
||||
self.fail(f"Pipeline {script_name} timed out after 300 seconds")
|
||||
|
||||
def test_default_pipeline(self):
|
||||
"""Test that the default pipeline runs successfully."""
|
||||
result = self._run_pipeline("default.py")
|
||||
self.assertEqual(result.returncode, 0)
|
||||
|
||||
def test_low_level_pipeline(self):
|
||||
"""Test that the low-level pipeline runs successfully."""
|
||||
result = self._run_pipeline("low_level.py")
|
||||
self.assertEqual(result.returncode, 0)
|
||||
|
||||
def test_custom_model_pipeline(self):
|
||||
"""Test that the custom model pipeline runs successfully."""
|
||||
result = self._run_pipeline("custom-model.py")
|
||||
self.assertEqual(result.returncode, 0)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
Loading…
Add table
Reference in a new issue