remove health check md files

This commit is contained in:
Pavan Chilukuri 2025-08-02 10:19:07 -05:00
parent 54e5be39e1
commit ec621f1f28
2 changed files with 0 additions and 363 deletions

View file

@ -1,200 +0,0 @@
# Cognee Health Check System Implementation
## Overview
This implementation provides a comprehensive health check system for the Cognee API that monitors all critical backend components and provides detailed health status information for production deployments, container orchestration, and monitoring systems.
## Implementation Files
### 1. `/cognee/api/health.py`
- **HealthChecker class**: Main health checking logic
- **Health models**: Pydantic models for structured responses
- **Component checkers**: Individual health check methods for each service
### 2. `/cognee/api/client.py` (Updated)
- **Enhanced health endpoints**: Three new endpoints replacing the basic health check
- **Proper HTTP status codes**: Returns appropriate status codes based on health status
## Health Check Endpoints
### 1. `GET /health` - Basic Liveness Probe
- **Purpose**: Basic liveness check for container orchestration
- **Response**: HTTP 200 (healthy/degraded) or 503 (unhealthy)
- **Use case**: Kubernetes liveness probe, load balancer health checks
### 2. `GET /health/ready` - Readiness Probe
- **Purpose**: Kubernetes readiness probe
- **Response**: JSON with ready/not ready status
- **Use case**: Kubernetes readiness probe, deployment verification
### 3. `GET /health/detailed` - Comprehensive Health Status
- **Purpose**: Detailed health information for monitoring and debugging
- **Response**: Complete health status with component details
- **Use case**: Monitoring dashboards, troubleshooting, operational visibility
## Health Check Components
### Critical Services (Failure = HTTP 503)
1. **Relational Database** (SQLite/PostgreSQL)
- Tests database connectivity and session creation
- Validates schema accessibility
2. **Vector Database** (LanceDB/Qdrant/PGVector/ChromaDB)
- Tests vector database connectivity
- Validates index accessibility
3. **Graph Database** (Kuzu/Neo4j/FalkorDB/Memgraph)
- Tests graph database connectivity
- Validates schema and basic operations
4. **File Storage** (Local/S3)
- Tests file system or S3 accessibility
- Validates read/write permissions
### Non-Critical Services (Failure = Degraded Status)
1. **LLM Provider** (OpenAI/Ollama/Anthropic/Gemini)
- Validates configuration and API key presence
- Non-blocking for core functionality
2. **Embedding Service**
- Tests embedding engine accessibility
- Non-blocking for core functionality
## Response Format
```json
{
"status": "healthy|degraded|unhealthy",
"timestamp": "2024-01-15T10:30:45Z",
"version": "1.0.0",
"uptime": 3600,
"components": {
"relational_db": {
"status": "healthy",
"provider": "sqlite",
"response_time_ms": 45,
"details": "Connection successful"
},
"vector_db": {
"status": "healthy",
"provider": "lancedb",
"response_time_ms": 120,
"details": "Index accessible"
},
"graph_db": {
"status": "healthy",
"provider": "kuzu",
"response_time_ms": 89,
"details": "Schema validated"
},
"file_storage": {
"status": "healthy",
"provider": "local",
"response_time_ms": 156,
"details": "Storage accessible"
},
"llm_provider": {
"status": "healthy",
"provider": "openai",
"response_time_ms": 1250,
"details": "Configuration valid"
},
"embedding_service": {
"status": "healthy",
"provider": "configured",
"response_time_ms": 890,
"details": "Embedding engine accessible"
}
}
}
```
## Health Status Logic
### Overall Status Determination
- **UNHEALTHY**: Any critical service is unhealthy
- **DEGRADED**: All critical services healthy, but non-critical services have issues
- **HEALTHY**: All services are functioning properly
### HTTP Status Codes
- **200**: Healthy or degraded (service operational)
- **503**: Unhealthy (service not ready/available)
## Usage Examples
### Kubernetes Deployment
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: cognee-api
spec:
template:
spec:
containers:
- name: cognee
image: cognee:latest
livenessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /health/ready
port: 8000
initialDelaySeconds: 5
periodSeconds: 5
```
### Docker Compose Health Check
```yaml
version: '3.8'
services:
cognee-api:
image: cognee:latest
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
interval: 30s
timeout: 10s
retries: 3
start_period: 40s
```
### Monitoring Integration
```bash
# Basic health check
curl http://localhost:8000/health
# Detailed health status for monitoring
curl http://localhost:8000/health/detailed | jq '.components'
# Readiness check
curl http://localhost:8000/health/ready
```
## Implementation Benefits
1. **Production Ready**: Proper HTTP status codes and structured responses
2. **Container Orchestration**: Kubernetes-compatible liveness and readiness probes
3. **Monitoring Integration**: Detailed component status for observability
4. **Graceful Degradation**: Distinguishes between critical and non-critical failures
5. **Performance Tracking**: Response time metrics for each component
6. **Troubleshooting**: Detailed error messages and component status
## Error Handling
- All health checks are wrapped in try-catch blocks
- Individual component failures don't crash the health check system
- Detailed error messages are provided for troubleshooting
- Timeouts and response times are tracked for performance monitoring
## Security Considerations
- Health endpoints don't expose sensitive configuration details
- Error messages are sanitized to prevent information leakage
- No authentication required for basic health checks (standard practice)
- Detailed endpoint can be restricted if needed via reverse proxy rules
This implementation provides a robust, production-ready health check system that meets enterprise requirements for monitoring, observability, and container orchestration.

View file

@ -1,163 +0,0 @@
# Health Check System Implementation Summary
## What Was Implemented
### 1. Core Health Check Module (`cognee/api/health.py`)
- **HealthChecker class**: Comprehensive health checking system
- **Pydantic models**: Structured response models for health data
- **Component checkers**: Individual health check methods for each backend service
- **Status determination logic**: Proper classification of healthy/degraded/unhealthy states
### 2. Enhanced API Endpoints (`cognee/api/client.py`)
- **`GET /health`**: Basic liveness probe (replaces existing basic endpoint)
- **`GET /health/ready`**: Kubernetes readiness probe
- **`GET /health/detailed`**: Comprehensive health status with component details
### 3. Backend Component Health Checks
#### Critical Services (Failure = HTTP 503)
- **Relational Database**: SQLite/PostgreSQL connectivity and session validation
- **Vector Database**: LanceDB/Qdrant/PGVector/ChromaDB connectivity and index access
- **Graph Database**: Kuzu/Neo4j/FalkorDB/Memgraph connectivity and schema validation
- **File Storage**: Local filesystem/S3 accessibility and permissions
#### Non-Critical Services (Failure = Degraded Status)
- **LLM Provider**: OpenAI/Ollama/Anthropic/Gemini configuration validation
- **Embedding Service**: Embedding engine accessibility check
## Key Features
### 1. Production-Ready Design
- Proper HTTP status codes (200 for healthy/degraded, 503 for unhealthy)
- Structured JSON responses with detailed component information
- Response time tracking for performance monitoring
- Graceful error handling and detailed error messages
### 2. Container Orchestration Support
- Kubernetes-compatible liveness and readiness probes
- Docker health check support
- Proper startup and runtime health validation
### 3. Monitoring Integration
- Detailed component status for observability platforms
- Performance metrics (response times)
- Version and uptime information
- Structured logging for troubleshooting
### 4. Robust Error Handling
- Individual component failures don't crash the health system
- Detailed error messages for troubleshooting
- Timeout handling and performance tracking
- Graceful degradation for non-critical services
## Response Format Example
```json
{
"status": "healthy",
"timestamp": "2024-01-15T10:30:45Z",
"version": "1.0.0-local",
"uptime": 3600,
"components": {
"relational_db": {
"status": "healthy",
"provider": "sqlite",
"response_time_ms": 45,
"details": "Connection successful"
},
"vector_db": {
"status": "healthy",
"provider": "lancedb",
"response_time_ms": 120,
"details": "Index accessible"
},
"graph_db": {
"status": "healthy",
"provider": "kuzu",
"response_time_ms": 89,
"details": "Schema validated"
},
"file_storage": {
"status": "healthy",
"provider": "local",
"response_time_ms": 156,
"details": "Storage accessible"
},
"llm_provider": {
"status": "healthy",
"provider": "openai",
"response_time_ms": 25,
"details": "Configuration valid"
},
"embedding_service": {
"status": "healthy",
"provider": "configured",
"response_time_ms": 30,
"details": "Embedding engine accessible"
}
}
}
```
## Files Created/Modified
### New Files
1. `cognee/api/health.py` - Core health check system
2. `examples/health_check_example.py` - Usage examples and monitoring script
3. `HEALTH_CHECK_IMPLEMENTATION.md` - Detailed documentation
4. `HEALTH_CHECK_SUMMARY.md` - This summary file
### Modified Files
1. `cognee/api/client.py` - Enhanced with new health endpoints
## Usage Examples
### Basic Health Check
```bash
curl http://localhost:8000/health
# Returns: HTTP 200 (healthy/degraded) or 503 (unhealthy)
```
### Readiness Check
```bash
curl http://localhost:8000/health/ready
# Returns: {"status": "ready"} or {"status": "not ready", "reason": "..."}
```
### Detailed Health Status
```bash
curl http://localhost:8000/health/detailed
# Returns: Complete health status with component details
```
### Kubernetes Integration
```yaml
livenessProbe:
httpGet:
path: /health
port: 8000
readinessProbe:
httpGet:
path: /health/ready
port: 8000
```
## Benefits Achieved
1. **Comprehensive Monitoring**: All critical backend services are monitored
2. **Production Ready**: Proper HTTP status codes and error handling
3. **Container Orchestration**: Kubernetes and Docker compatibility
4. **Observability**: Detailed metrics and status information
5. **Troubleshooting**: Clear error messages and component status
6. **Performance Tracking**: Response time metrics for each component
7. **Graceful Degradation**: Distinguishes critical vs non-critical failures
## Implementation Notes
- Health checks are designed to be lightweight and fast
- Critical service failures result in HTTP 503 (service unavailable)
- Non-critical service failures result in degraded status but HTTP 200
- All health checks include proper error handling and timeout management
- The system is extensible for adding new backend components
This implementation provides a robust, enterprise-grade health check system that meets the requirements for production deployments, container orchestration, and comprehensive monitoring.