Merge branch 'main' into COG-698

This commit is contained in:
Boris 2024-12-08 14:23:03 +01:00 committed by GitHub
commit ea879b2882
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
48 changed files with 756 additions and 215 deletions

View file

@ -0,0 +1,69 @@
name: test | deduplication
on:
workflow_dispatch:
pull_request:
branches:
- main
types: [labeled, synchronize]
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
RUNTIME__LOG_LEVEL: ERROR
jobs:
get_docs_changes:
name: docs changes
uses: ./.github/workflows/get_docs_changes.yml
run_deduplication_test:
name: test
needs: get_docs_changes
if: needs.get_docs_changes.outputs.changes_outside_docs == 'true' && ${{ github.event.label.name == 'run-checks' }}
runs-on: ubuntu-latest
defaults:
run:
shell: bash
services:
postgres:
image: pgvector/pgvector:pg17
env:
POSTGRES_USER: cognee
POSTGRES_PASSWORD: cognee
POSTGRES_DB: cognee_db
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
ports:
- 5432:5432
steps:
- name: Check out
uses: actions/checkout@master
- name: Setup Python
uses: actions/setup-python@v5
with:
python-version: '3.11.x'
- name: Install Poetry
uses: snok/install-poetry@v1.3.2
with:
virtualenvs-create: true
virtualenvs-in-project: true
installer-parallel: true
- name: Install dependencies
run: poetry install -E postgres --no-interaction
- name: Run deduplication test
env:
ENV: 'dev'
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }}
run: poetry run python ./cognee/tests/test_deduplication.py

127
CODE_OF_CONDUCT.md Normal file
View file

@ -0,0 +1,127 @@
# Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
- Demonstrating empathy and kindness toward other people
- Being respectful of differing opinions, viewpoints, and experiences
- Giving and gracefully accepting constructive feedback
- Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
- Focusing on what is best not just for us as individuals, but for the
overall community
Examples of unacceptable behavior include:
- The use of sexualized language or imagery, and sexual attention or
advances of any kind
- Trolling, insulting or derogatory comments, and personal or political attacks
- Public or private harassment
- Publishing others' private information, such as a physical or email
address, without their explicit permission
- Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement by emailing <NAME> at <EMAIL>.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series
of actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within
the community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by [Mozilla's code of conduct
enforcement ladder](https://github.com/mozilla/diversity).
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

View file

@ -49,10 +49,10 @@ python cognee/cognee/tests/test_library.py
```shell
# Add your changes to the staging area:
git add .
git add .
# Commit changes with an adequate description:
git commit -m "Describe your changes here"
# Commit changes with an adequate description:
git commit -m "Describe your changes here"
# Push your feature branch to your forked repository:
git push origin feature/your-feature-name
@ -73,7 +73,7 @@ The project maintainers will review your work, possibly suggest improvements, or
## 5. 📜 Code of Conduct
Ensure you adhere to the project's Code of Conduct throughout your participation.
Ensure you adhere to the project's [Code of Conduct](https://github.com/topoteretes/cognee/blob/main/CODE_OF_CONDUCT.md) throughout your participation.
## 6. 📫 Contact

10
NOTICE.md Normal file
View file

@ -0,0 +1,10 @@
topoteretes - cognee
Copyright © 2024 Topoteretes UG. (haftungsbeschränkt), Schonehauser Allee 163, Berlin.
This project includes software developed at Topoteretes UG. (https://www.cognee.ai/).
<!-- Add software from external sources that you used here. e.g.
This project redistributes code originally from <website>.
-->

View file

@ -33,11 +33,11 @@ async def add(data: Union[BinaryIO, List[BinaryIO], str, List[str]], dataset_nam
# data is text
else:
file_path = save_data_to_file(data, dataset_name)
file_path = save_data_to_file(data)
return await add([file_path], dataset_name)
if hasattr(data, "file"):
file_path = save_data_to_file(data.file, dataset_name, filename = data.filename)
file_path = save_data_to_file(data.file, filename = data.filename)
return await add([file_path], dataset_name)
# data is a list of file paths or texts
@ -45,13 +45,13 @@ async def add(data: Union[BinaryIO, List[BinaryIO], str, List[str]], dataset_nam
for data_item in data:
if hasattr(data_item, "file"):
file_paths.append(save_data_to_file(data_item, dataset_name, filename = data_item.filename))
file_paths.append(save_data_to_file(data_item, filename = data_item.filename))
elif isinstance(data_item, str) and (
data_item.startswith("/") or data_item.startswith("file://")
):
file_paths.append(data_item)
elif isinstance(data_item, str):
file_paths.append(save_data_to_file(data_item, dataset_name))
file_paths.append(save_data_to_file(data_item))
if len(file_paths) > 0:
return await add_files(file_paths, dataset_name, user)

View file

@ -81,13 +81,13 @@ async def run_cognify_pipeline(dataset: Dataset, user: User):
Task(classify_documents),
Task(check_permissions_on_documents, user = user, permissions = ["write"]),
Task(extract_chunks_from_documents), # Extract text chunks based on the document type.
Task(add_data_points, task_config = { "batch_size": 10 }),
Task(extract_graph_from_data, graph_model = KnowledgeGraph, task_config = { "batch_size": 10 }), # Generate knowledge graphs from the document chunks.
Task(
summarize_text,
summarization_model = cognee_config.summarization_model,
task_config = { "batch_size": 10 }
),
Task(add_data_points, task_config = { "batch_size": 10 }),
]
pipeline = run_tasks(tasks, data_documents, "cognify_pipeline")

View file

@ -29,7 +29,14 @@ class LiteLLMEmbeddingEngine(EmbeddingEngine):
self.model = model
self.dimensions = dimensions
MAX_RETRIES = 5
retry_count = 0
async def embed_text(self, text: List[str]) -> List[List[float]]:
async def exponential_backoff(attempt):
wait_time = min(10 * (2 ** attempt), 60) # Max 60 seconds
await asyncio.sleep(wait_time)
try:
response = await litellm.aembedding(
self.model,
@ -38,11 +45,18 @@ class LiteLLMEmbeddingEngine(EmbeddingEngine):
api_base = self.endpoint,
api_version = self.api_version
)
self.retry_count = 0
return [data["embedding"] for data in response.data]
except litellm.exceptions.ContextWindowExceededError as error:
if isinstance(text, list):
parts = [text[0:math.ceil(len(text)/2)], text[math.ceil(len(text)/2):]]
if len(text) == 1:
parts = [text]
else:
parts = [text[0:math.ceil(len(text)/2)], text[math.ceil(len(text)/2):]]
parts_futures = [self.embed_text(part) for part in parts]
embeddings = await asyncio.gather(*parts_futures)
@ -50,11 +64,21 @@ class LiteLLMEmbeddingEngine(EmbeddingEngine):
for embeddings_part in embeddings:
all_embeddings.extend(embeddings_part)
return [data["embedding"] for data in all_embeddings]
return all_embeddings
logger.error("Context window exceeded for embedding text: %s", str(error))
raise error
except litellm.exceptions.RateLimitError:
if self.retry_count >= self.MAX_RETRIES:
raise Exception(f"Rate limit exceeded and no more retries left.")
await exponential_backoff(self.retry_count)
self.retry_count += 1
return await self.embed_text(text)
except Exception as error:
logger.error("Error embedding text: %s", str(error))
raise error

View file

@ -1,5 +1,7 @@
from typing import BinaryIO, TypedDict
import hashlib
from .guess_file_type import guess_file_type
from cognee.shared.utils import get_file_content_hash
class FileMetadata(TypedDict):
@ -7,10 +9,14 @@ class FileMetadata(TypedDict):
file_path: str
mime_type: str
extension: str
content_hash: str
def get_file_metadata(file: BinaryIO) -> FileMetadata:
"""Get metadata from a file"""
file.seek(0)
content_hash = get_file_content_hash(file)
file.seek(0)
file_type = guess_file_type(file)
file_path = file.name
@ -21,4 +27,5 @@ def get_file_metadata(file: BinaryIO) -> FileMetadata:
file_path = file_path,
mime_type = file_type.mime,
extension = file_type.extension,
content_hash = content_hash,
)

View file

@ -35,6 +35,7 @@ class TextChunker():
is_part_of = self.document,
chunk_index = self.chunk_index,
cut_type = chunk_data["cut_type"],
contains = [],
_metadata = {
"index_fields": ["text"],
"metadata_id": self.document.metadata_id
@ -52,6 +53,7 @@ class TextChunker():
is_part_of = self.document,
chunk_index = self.chunk_index,
cut_type = paragraph_chunks[len(paragraph_chunks) - 1]["cut_type"],
contains = [],
_metadata = {
"index_fields": ["text"],
"metadata_id": self.document.metadata_id
@ -73,6 +75,7 @@ class TextChunker():
is_part_of = self.document,
chunk_index = self.chunk_index,
cut_type = paragraph_chunks[len(paragraph_chunks) - 1]["cut_type"],
contains = [],
_metadata = {
"index_fields": ["text"],
"metadata_id": self.document.metadata_id

View file

@ -1,6 +1,7 @@
from typing import Optional
from typing import List, Optional
from cognee.infrastructure.engine import DataPoint
from cognee.modules.data.processing.document_types import Document
from cognee.modules.engine.models import Entity
class DocumentChunk(DataPoint):
__tablename__ = "document_chunk"
@ -9,6 +10,7 @@ class DocumentChunk(DataPoint):
chunk_index: int
cut_type: str
is_part_of: Document
contains: List[Entity] = None
_metadata: Optional[dict] = {
"index_fields": ["text"],

View file

@ -0,0 +1 @@
from .DocumentChunk import DocumentChunk

View file

@ -1,7 +1,6 @@
from datetime import datetime, timezone
from typing import List
from uuid import uuid4
from sqlalchemy import UUID, Column, DateTime, String
from sqlalchemy.orm import Mapped, relationship
@ -19,6 +18,8 @@ class Data(Base):
extension = Column(String)
mime_type = Column(String)
raw_data_location = Column(String)
owner_id = Column(UUID, index=True)
content_hash = Column(String)
created_at = Column(
DateTime(timezone=True), default=lambda: datetime.now(timezone.utc)
)

View file

@ -2,7 +2,6 @@ import inspect
import json
import re
import warnings
from typing import Any
from uuid import UUID
from sqlalchemy import select
from typing import Any, BinaryIO, Union

View file

@ -1,5 +1,4 @@
from cognee.infrastructure.engine import DataPoint
from cognee.modules.chunking.models.DocumentChunk import DocumentChunk
from cognee.modules.engine.models.EntityType import EntityType
@ -8,7 +7,6 @@ class Entity(DataPoint):
name: str
is_a: EntityType
description: str
mentioned_in: DocumentChunk
_metadata: dict = {
"index_fields": ["name"],

View file

@ -1,13 +1,10 @@
from cognee.infrastructure.engine import DataPoint
from cognee.modules.chunking.models.DocumentChunk import DocumentChunk
class EntityType(DataPoint):
__tablename__ = "entity_type"
name: str
type: str
description: str
exists_in: DocumentChunk
_metadata: dict = {
"index_fields": ["name"],

View file

@ -1,6 +1,6 @@
from typing import Optional
from cognee.infrastructure.engine import DataPoint
from cognee.modules.chunking.models import DocumentChunk
from cognee.modules.engine.models import Entity, EntityType
from cognee.modules.engine.utils import (
generate_edge_name,
@ -11,7 +11,8 @@ from cognee.shared.data_models import KnowledgeGraph
def expand_with_nodes_and_edges(
graph_node_index: list[tuple[DataPoint, KnowledgeGraph]],
data_chunks: list[DocumentChunk],
chunk_graphs: list[KnowledgeGraph],
existing_edges_map: Optional[dict[str, bool]] = None,
):
if existing_edges_map is None:
@ -19,9 +20,10 @@ def expand_with_nodes_and_edges(
added_nodes_map = {}
relationships = []
data_points = []
for graph_source, graph in graph_node_index:
for index, data_chunk in enumerate(data_chunks):
graph = chunk_graphs[index]
if graph is None:
continue
@ -38,7 +40,6 @@ def expand_with_nodes_and_edges(
name = type_node_name,
type = type_node_name,
description = type_node_name,
exists_in = graph_source,
)
added_nodes_map[f"{str(type_node_id)}_type"] = type_node
else:
@ -50,9 +51,13 @@ def expand_with_nodes_and_edges(
name = node_name,
is_a = type_node,
description = node.description,
mentioned_in = graph_source,
)
data_points.append(entity_node)
if data_chunk.contains is None:
data_chunk.contains = []
data_chunk.contains.append(entity_node)
added_nodes_map[f"{str(node_id)}_entity"] = entity_node
# Add relationship that came from graphs.
@ -80,4 +85,4 @@ def expand_with_nodes_and_edges(
)
existing_edges_map[edge_key] = True
return (data_points, relationships)
return (data_chunks, relationships)

View file

@ -1,154 +1,115 @@
from datetime import datetime, timezone
from cognee.infrastructure.engine import DataPoint
from cognee.modules.storage.utils import copy_model
async def get_graph_from_model(
data_point: DataPoint,
added_nodes: dict,
added_edges: dict,
visited_properties: dict = None,
include_root = True,
added_nodes = None,
added_edges = None,
visited_properties = None,
):
if str(data_point.id) in added_nodes:
return [], []
nodes = []
edges = []
added_nodes = added_nodes or {}
added_edges = added_edges or {}
visited_properties = visited_properties or {}
data_point_properties = {}
excluded_properties = set()
if str(data_point.id) in added_nodes:
return nodes, edges
properties_to_visit = set()
for field_name, field_value in data_point:
if field_name == "_metadata":
continue
if field_value is None:
excluded_properties.add(field_name)
continue
if isinstance(field_value, DataPoint):
excluded_properties.add(field_name)
property_key = f"{str(data_point.id)}{field_name}{str(field_value.id)}"
property_key = str(data_point.id) + field_name + str(field_value.id)
if property_key in visited_properties:
continue
visited_properties[property_key] = True
nodes, edges = await add_nodes_and_edges(
data_point,
field_name,
field_value,
nodes,
edges,
added_nodes,
added_edges,
visited_properties,
)
properties_to_visit.add(field_name)
continue
if isinstance(field_value, list) and len(field_value) > 0 and isinstance(field_value[0], DataPoint):
excluded_properties.add(field_name)
for field_value_item in field_value:
property_key = f"{str(data_point.id)}{field_name}{str(field_value_item.id)}"
for index, item in enumerate(field_value):
property_key = str(data_point.id) + field_name + str(item.id)
if property_key in visited_properties:
continue
visited_properties[property_key] = True
nodes, edges = await add_nodes_and_edges(
data_point,
field_name,
field_value_item,
nodes,
edges,
added_nodes,
added_edges,
visited_properties,
)
properties_to_visit.add(f"{field_name}.{index}")
continue
data_point_properties[field_name] = field_value
if include_root:
if include_root and str(data_point.id) not in added_nodes:
SimpleDataPointModel = copy_model(
type(data_point),
include_fields = {
"_metadata": (dict, data_point._metadata),
"__tablename__": data_point.__tablename__,
"__tablename__": (str, data_point.__tablename__),
},
exclude_fields = excluded_properties,
exclude_fields = list(excluded_properties),
)
nodes.append(SimpleDataPointModel(**data_point_properties))
added_nodes[str(data_point.id)] = True
for field_name in properties_to_visit:
index = None
if "." in field_name:
field_name, index = field_name.split(".")
field_value = getattr(data_point, field_name)
if index is not None:
field_value = field_value[int(index)]
edge_key = str(data_point.id) + str(field_value.id) + field_name
if str(edge_key) not in added_edges:
edges.append((data_point.id, field_value.id, field_name, {
"source_node_id": data_point.id,
"target_node_id": field_value.id,
"relationship_name": field_name,
"updated_at": datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
}))
added_edges[str(edge_key)] = True
if str(field_value.id) in added_nodes:
continue
property_nodes, property_edges = await get_graph_from_model(
field_value,
include_root = True,
added_nodes = added_nodes,
added_edges = added_edges,
visited_properties = visited_properties,
)
for node in property_nodes:
nodes.append(node)
for edge in property_edges:
edges.append(edge)
property_key = str(data_point.id) + field_name + str(field_value.id)
visited_properties[property_key] = True
return nodes, edges
async def add_nodes_and_edges(
data_point,
field_name,
field_value,
nodes,
edges,
added_nodes,
added_edges,
visited_properties,
):
property_nodes, property_edges = await get_graph_from_model(
field_value,
True,
added_nodes,
added_edges,
visited_properties,
)
for node in property_nodes:
if str(node.id) not in added_nodes:
nodes.append(node)
added_nodes[str(node.id)] = True
for edge in property_edges:
edge_key = str(edge[0]) + str(edge[1]) + edge[2]
if str(edge_key) not in added_edges:
edges.append(edge)
added_edges[str(edge_key)] = True
for property_node in get_own_properties(property_nodes, property_edges):
edge_key = str(data_point.id) + str(property_node.id) + field_name
if str(edge_key) not in added_edges:
edges.append(
(
data_point.id,
property_node.id,
field_name,
{
"source_node_id": data_point.id,
"target_node_id": property_node.id,
"relationship_name": field_name,
"updated_at": datetime.now(timezone.utc).strftime(
"%Y-%m-%d %H:%M:%S"
),
},
)
)
added_edges[str(edge_key)] = True
return (nodes, edges)
def get_own_properties(property_nodes, property_edges):
def get_own_property_nodes(property_nodes, property_edges):
own_properties = []
destination_nodes = [str(property_edge[1]) for property_edge in property_edges]

View file

@ -5,7 +5,8 @@ from cognee.shared.data_models import KnowledgeGraph
async def retrieve_existing_edges(
graph_node_index: list[tuple[DataPoint, KnowledgeGraph]],
data_chunks: list[DataPoint],
chunk_graphs: list[KnowledgeGraph],
graph_engine: GraphDBInterface,
) -> dict[str, bool]:
processed_nodes = {}
@ -13,23 +14,25 @@ async def retrieve_existing_edges(
entity_node_edges = []
type_entity_edges = []
for graph_source, graph in graph_node_index:
for index, data_chunk in enumerate(data_chunks):
graph = chunk_graphs[index]
for node in graph.nodes:
type_node_id = generate_node_id(node.type)
entity_node_id = generate_node_id(node.id)
if str(type_node_id) not in processed_nodes:
type_node_edges.append(
(str(graph_source), str(type_node_id), "exists_in")
(data_chunk.id, type_node_id, "exists_in")
)
processed_nodes[str(type_node_id)] = True
if str(entity_node_id) not in processed_nodes:
entity_node_edges.append(
(str(graph_source), entity_node_id, "mentioned_in")
(data_chunk.id, entity_node_id, "mentioned_in")
)
type_entity_edges.append(
(str(entity_node_id), str(type_node_id), "is_a")
(entity_node_id, type_node_id, "is_a")
)
processed_nodes[str(entity_node_id)] = True

View file

@ -17,7 +17,7 @@ class BinaryData(IngestionData):
def get_identifier(self):
metadata = self.get_metadata()
return self.name + "." + metadata["extension"]
return metadata["content_hash"]
def get_metadata(self):
self.ensure_metadata()

View file

@ -1,7 +1,11 @@
from uuid import uuid5, NAMESPACE_OID
from .data_types import IngestionData
def identify(data: IngestionData) -> str:
data_id: str = data.get_identifier()
from cognee.modules.users.models import User
return uuid5(NAMESPACE_OID, data_id)
def identify(data: IngestionData, user: User) -> str:
data_content_hash: str = data.get_identifier()
# return UUID hash of file contents + owner id
return uuid5(NAMESPACE_OID, f"{data_content_hash}{user.id}")

View file

@ -1,25 +1,28 @@
import string
import random
import os.path
import hashlib
from typing import BinaryIO, Union
from cognee.base_config import get_base_config
from cognee.infrastructure.files.storage import LocalStorage
from .classify import classify
def save_data_to_file(data: Union[str, BinaryIO], dataset_name: str, filename: str = None):
def save_data_to_file(data: Union[str, BinaryIO], filename: str = None):
base_config = get_base_config()
data_directory_path = base_config.data_root_directory
classified_data = classify(data, filename)
storage_path = data_directory_path + "/" + dataset_name.replace(".", "/")
storage_path = os.path.join(data_directory_path, "data")
LocalStorage.ensure_directory_exists(storage_path)
file_metadata = classified_data.get_metadata()
if "name" not in file_metadata or file_metadata["name"] is None:
letters = string.ascii_lowercase
random_string = "".join(random.choice(letters) for _ in range(32))
file_metadata["name"] = "text_" + random_string + ".txt"
data_contents = classified_data.get_data().encode('utf-8')
hash_contents = hashlib.md5(data_contents).hexdigest()
file_metadata["name"] = "text_" + hash_contents + ".txt"
file_name = file_metadata["name"]
LocalStorage(storage_path).store(file_name, classified_data.get_data())
# Don't save file if it already exists
if not os.path.isfile(os.path.join(storage_path, file_name)):
LocalStorage(storage_path).store(file_name, classified_data.get_data())
return "file://" + storage_path + "/" + file_name

View file

@ -1,10 +1,12 @@
import json
import inspect
import json
import logging
from cognee.modules.settings import get_current_settings
from cognee.shared.utils import send_telemetry
from cognee.modules.users.models import User
from cognee.modules.users.methods import get_default_user
from cognee.modules.users.models import User
from cognee.shared.utils import send_telemetry
from ..tasks.Task import Task
logger = logging.getLogger("run_tasks(tasks: [Task], data)")
@ -160,21 +162,28 @@ async def run_tasks_base(tasks: list[Task], data = None, user: User = None):
raise error
async def run_tasks_with_telemetry(tasks: list[Task], data, pipeline_name: str):
user = await get_default_user()
config = get_current_settings()
logger.debug("\nRunning pipeline with configuration:\n%s\n", json.dumps(config, indent = 1))
user = await get_default_user()
try:
logger.info("Pipeline run started: `%s`", pipeline_name)
send_telemetry("Pipeline Run Started", user.id, {
"pipeline_name": pipeline_name,
})
send_telemetry("Pipeline Run Started",
user.id,
additional_properties = {"pipeline_name": pipeline_name, } | config
)
async for result in run_tasks_base(tasks, data, user):
yield result
logger.info("Pipeline run completed: `%s`", pipeline_name)
send_telemetry("Pipeline Run Completed", user.id, {
"pipeline_name": pipeline_name,
})
send_telemetry("Pipeline Run Completed",
user.id,
additional_properties = {"pipeline_name": pipeline_name, }
)
except Exception as error:
logger.error(
"Pipeline run errored: `%s`\n%s\n",
@ -182,15 +191,14 @@ async def run_tasks_with_telemetry(tasks: list[Task], data, pipeline_name: str):
str(error),
exc_info = True,
)
send_telemetry("Pipeline Run Errored", user.id, {
"pipeline_name": pipeline_name,
})
send_telemetry("Pipeline Run Errored",
user.id,
additional_properties = {"pipeline_name": pipeline_name, } | config
)
raise error
async def run_tasks(tasks: list[Task], data = None, pipeline_name: str = "default_pipeline"):
config = get_current_settings()
logger.debug("\nRunning pipeline with configuration:\n%s\n", json.dumps(config, indent = 1))
async for result in run_tasks_with_telemetry(tasks, data, pipeline_name):
yield result

View file

@ -7,7 +7,7 @@ class Repository(DataPoint):
type: Optional[str] = "Repository"
class CodeFile(DataPoint):
__tablename__ = "CodeFile"
__tablename__ = "codefile"
extracted_id: str # actually file path
type: Optional[str] = "CodeFile"
source_code: Optional[str] = None
@ -21,7 +21,7 @@ class CodeFile(DataPoint):
}
class CodePart(DataPoint):
__tablename__ = "CodePart"
__tablename__ = "codepart"
# part_of: Optional[CodeFile]
source_code: str
type: Optional[str] = "CodePart"

View file

@ -0,0 +1,9 @@
"""
Custom exceptions for the Cognee API.
This module defines a set of exceptions for handling various shared utility errors
"""
from .exceptions import (
IngestionError,
)

View file

@ -0,0 +1,11 @@
from cognee.exceptions import CogneeApiError
from fastapi import status
class IngestionError(CogneeApiError):
def __init__(
self,
message: str = "Failed to load data.",
name: str = "IngestionError",
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
):
super().__init__(message, name, status_code)

View file

@ -1,6 +1,9 @@
""" This module contains utility functions for the cognee. """
import os
from typing import BinaryIO, Union
import requests
import hashlib
from datetime import datetime, timezone
import graphistry
import networkx as nx
@ -16,6 +19,8 @@ from cognee.infrastructure.databases.graph import get_graph_engine
from uuid import uuid4
import pathlib
from cognee.shared.exceptions import IngestionError
# Analytics Proxy Url, currently hosted by Vercel
proxy_url = "https://test.prometh.ai"
@ -70,6 +75,29 @@ def num_tokens_from_string(string: str, encoding_name: str) -> int:
num_tokens = len(encoding.encode(string))
return num_tokens
def get_file_content_hash(file_obj: Union[str, BinaryIO]) -> str:
h = hashlib.md5()
try:
if isinstance(file_obj, str):
with open(file_obj, 'rb') as file:
while True:
# Reading is buffered, so we can read smaller chunks.
chunk = file.read(h.block_size)
if not chunk:
break
h.update(chunk)
else:
while True:
# Reading is buffered, so we can read smaller chunks.
chunk = file_obj.read(h.block_size)
if not chunk:
break
h.update(chunk)
return h.hexdigest()
except IOError as e:
raise IngestionError(message=f"Failed to load data from {file}: {e}")
def trim_text_to_max_tokens(text: str, max_tokens: int, encoding_name: str) -> str:
"""

View file

@ -44,11 +44,11 @@ async def classify_documents(data_documents: list[Data]) -> list[Document]:
for data_item in data_documents:
metadata = await get_metadata(data_item.id)
document = EXTENSION_TO_DOCUMENT_CLASS[data_item.extension](
id=data_item.id,
title=f"{data_item.name}.{data_item.extension}",
raw_data_location=data_item.raw_data_location,
name=data_item.name,
metadata_id=metadata.id
id = data_item.id,
title = f"{data_item.name}.{data_item.extension}",
raw_data_location = data_item.raw_data_location,
name = data_item.name,
metadata_id = metadata.id
)
documents.append(document)

View file

@ -20,16 +20,16 @@ async def extract_graph_from_data(
*[extract_content_graph(chunk.text, graph_model) for chunk in data_chunks]
)
graph_engine = await get_graph_engine()
chunk_and_chunk_graphs = [
(chunk, chunk_graph) for chunk, chunk_graph in zip(data_chunks, chunk_graphs)
]
existing_edges_map = await retrieve_existing_edges(
chunk_and_chunk_graphs,
data_chunks,
chunk_graphs,
graph_engine,
)
graph_nodes, graph_edges = expand_with_nodes_and_edges(
chunk_and_chunk_graphs,
data_chunks,
chunk_graphs,
existing_edges_map,
)

View file

@ -1,10 +1,10 @@
from typing import Any
from typing import Any, List
import dlt
import cognee.modules.ingestion as ingestion
from cognee.infrastructure.databases.relational import get_relational_engine
from cognee.modules.data.methods import create_dataset
from cognee.modules.data.operations.delete_metadata import delete_metadata
from cognee.modules.data.models.DatasetData import DatasetData
from cognee.modules.users.models import User
from cognee.modules.users.permissions.methods import give_permission_on_document
from cognee.shared.utils import send_telemetry
@ -23,12 +23,12 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
destination = destination,
)
@dlt.resource(standalone=True, merge_key="id")
async def data_resources(file_paths: str):
@dlt.resource(standalone=True, primary_key="id", merge_key="id")
async def data_resources(file_paths: List[str], user: User):
for file_path in file_paths:
with open(file_path.replace("file://", ""), mode="rb") as file:
classified_data = ingestion.classify(file)
data_id = ingestion.identify(classified_data)
data_id = ingestion.identify(classified_data, user)
file_metadata = classified_data.get_metadata()
yield {
"id": data_id,
@ -36,6 +36,8 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
"file_path": file_metadata["file_path"],
"extension": file_metadata["extension"],
"mime_type": file_metadata["mime_type"],
"content_hash": file_metadata["content_hash"],
"owner_id": str(user.id),
}
async def data_storing(data: Any, dataset_name: str, user: User):
@ -57,7 +59,8 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
with open(file_path.replace("file://", ""), mode = "rb") as file:
classified_data = ingestion.classify(file)
data_id = ingestion.identify(classified_data)
# data_id is the hash of file contents + owner id to avoid duplicate data
data_id = ingestion.identify(classified_data, user)
file_metadata = classified_data.get_metadata()
@ -70,6 +73,7 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
async with db_engine.get_async_session() as session:
dataset = await create_dataset(dataset_name, user.id, session)
# Check to see if data should be updated
data_point = (
await session.execute(select(Data).filter(Data.id == data_id))
).scalar_one_or_none()
@ -79,6 +83,8 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
data_point.raw_data_location = file_metadata["file_path"]
data_point.extension = file_metadata["extension"]
data_point.mime_type = file_metadata["mime_type"]
data_point.owner_id = user.id
data_point.content_hash = file_metadata["content_hash"]
await session.merge(data_point)
else:
data_point = Data(
@ -86,10 +92,20 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
name = file_metadata["name"],
raw_data_location = file_metadata["file_path"],
extension = file_metadata["extension"],
mime_type = file_metadata["mime_type"]
mime_type = file_metadata["mime_type"],
owner_id = user.id,
content_hash = file_metadata["content_hash"],
)
# Check if data is already in dataset
dataset_data = (
await session.execute(select(DatasetData).filter(DatasetData.data_id == data_id,
DatasetData.dataset_id == dataset.id))
).scalar_one_or_none()
# If data is not present in dataset add it
if dataset_data is None:
dataset.data.append(data_point)
await session.commit()
await write_metadata(data_item, data_point.id, file_metadata)
@ -109,16 +125,17 @@ async def ingest_data_with_metadata(data: Any, dataset_name: str, user: User):
# To use sqlite with dlt dataset_name must be set to "main".
# Sqlite doesn't support schemas
run_info = pipeline.run(
data_resources(file_paths),
data_resources(file_paths, user),
table_name="file_metadata",
dataset_name="main",
write_disposition="merge",
)
else:
# Data should be stored in the same schema to allow deduplication
run_info = pipeline.run(
data_resources(file_paths),
data_resources(file_paths, user),
table_name="file_metadata",
dataset_name=dataset_name,
dataset_name="public",
write_disposition="merge",
)

View file

@ -7,7 +7,7 @@ def save_data_item_to_storage(data_item: Union[BinaryIO, str], dataset_name: str
# data is a file object coming from upload.
if hasattr(data_item, "file"):
file_path = save_data_to_file(data_item.file, dataset_name, filename=data_item.filename)
file_path = save_data_to_file(data_item.file, filename=data_item.filename)
elif isinstance(data_item, str):
# data is a file path
@ -15,7 +15,7 @@ def save_data_item_to_storage(data_item: Union[BinaryIO, str], dataset_name: str
file_path = data_item.replace("file://", "")
# data is text
else:
file_path = save_data_to_file(data_item, dataset_name)
file_path = save_data_to_file(data_item)
else:
raise IngestionError(message=f"Data type not supported: {type(data_item)}")

View file

@ -17,7 +17,7 @@ async def save_data_item_with_metadata_to_storage(
# data is a file object coming from upload.
elif hasattr(data_item, "file"):
file_path = save_data_to_file(
data_item.file, dataset_name, filename=data_item.filename
data_item.file, filename=data_item.filename
)
elif isinstance(data_item, str):
@ -26,7 +26,7 @@ async def save_data_item_with_metadata_to_storage(
file_path = data_item.replace("file://", "")
# data is text
else:
file_path = save_data_to_file(data_item, dataset_name)
file_path = save_data_to_file(data_item)
else:
raise IngestionError(message=f"Data type not supported: {type(data_item)}")

View file

@ -8,11 +8,11 @@ def get_data_from_llama_index(data_point: Union[Document, ImageDocument], datase
if type(data_point) == Document:
file_path = data_point.metadata.get("file_path")
if file_path is None:
file_path = save_data_to_file(data_point.text, dataset_name)
file_path = save_data_to_file(data_point.text)
return file_path
return file_path
elif type(data_point) == ImageDocument:
if data_point.image_path is None:
file_path = save_data_to_file(data_point.text, dataset_name)
file_path = save_data_to_file(data_point.text)
return file_path
return data_point.image_path

View file

@ -70,7 +70,7 @@ async def node_enrich_and_connect(
if desc_id in data_points_map:
desc = data_points_map[desc_id]
else:
node_data = await graph_engine.extract_node(desc_id)
node_data = await graph_engine.extract_node(str(desc_id))
try:
desc = convert_node_to_data_point(node_data)
except Exception:
@ -87,9 +87,17 @@ async def enrich_dependency_graph(data_points: list[DataPoint]) -> AsyncGenerato
"""Enriches the graph with topological ranks and 'depends_on' edges."""
nodes = []
edges = []
added_nodes = {}
added_edges = {}
visited_properties = {}
for data_point in data_points:
graph_nodes, graph_edges = await get_graph_from_model(data_point)
graph_nodes, graph_edges = await get_graph_from_model(
data_point,
added_nodes = added_nodes,
added_edges = added_edges,
visited_properties = visited_properties,
)
nodes.extend(graph_nodes)
edges.extend(graph_edges)

View file

@ -11,12 +11,14 @@ async def add_data_points(data_points: list[DataPoint]):
added_nodes = {}
added_edges = {}
visited_properties = {}
results = await asyncio.gather(*[
get_graph_from_model(
data_point,
added_nodes = added_nodes,
added_edges = added_edges,
visited_properties = visited_properties,
) for data_point in data_points
])

View file

@ -1,6 +1,5 @@
from cognee.infrastructure.engine import DataPoint
from cognee.modules.chunking.models.DocumentChunk import DocumentChunk
from cognee.modules.data.processing.document_types import Document
from cognee.modules.chunking.models import DocumentChunk
from cognee.shared.CodeGraphEntities import CodeFile

View file

@ -4,7 +4,6 @@ from uuid import uuid5
from pydantic import BaseModel
from cognee.modules.data.extraction.extract_summary import extract_summary
from cognee.modules.chunking.models.DocumentChunk import DocumentChunk
from cognee.tasks.storage import add_data_points
from .models import TextSummary
async def summarize_text(data_chunks: list[DocumentChunk], summarization_model: Type[BaseModel]):
@ -23,6 +22,4 @@ async def summarize_text(data_chunks: list[DocumentChunk], summarization_model:
) for (chunk_index, chunk) in enumerate(data_chunks)
]
await add_data_points(summaries)
return data_chunks
return summaries

View file

@ -0,0 +1,2 @@
Natural language processing (NLP) is an interdisciplinary subfield of computer science and information retrieval. It is primarily concerned with giving computers the ability to support and manipulate human language. It involves processing natural language datasets, such as text corpora or speech corpora, using either rule-based or probabilistic (i.e. statistical and, most recently, neural network-based) machine learning approaches. The goal is a computer capable of "understanding"[citation needed] the contents of documents, including the contextual nuances of the language within them. To this end, natural language processing often borrows ideas from theoretical linguistics. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.
Challenges in natural language processing frequently involve speech recognition, natural-language understanding, and natural-language generation.

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Binary file not shown.

View file

@ -0,0 +1,160 @@
import hashlib
import os
import logging
import pathlib
import cognee
from cognee.infrastructure.databases.relational import get_relational_engine
logging.basicConfig(level=logging.DEBUG)
async def test_deduplication():
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
relational_engine = get_relational_engine()
dataset_name = "test_deduplication"
dataset_name2 = "test_deduplication2"
# Test deduplication of local files
explanation_file_path = os.path.join(
pathlib.Path(__file__).parent, "test_data/Natural_language_processing.txt"
)
explanation_file_path2 = os.path.join(
pathlib.Path(__file__).parent, "test_data/Natural_language_processing_copy.txt"
)
await cognee.add([explanation_file_path], dataset_name)
await cognee.add([explanation_file_path2], dataset_name2)
result = await relational_engine.get_all_data_from_table("data")
assert len(result) == 1, "More than one data entity was found."
assert result[0]["name"] == "Natural_language_processing_copy", "Result name does not match expected value."
result = await relational_engine.get_all_data_from_table("datasets")
assert len(result) == 2, "Unexpected number of datasets found."
assert result[0]["name"] == dataset_name, "Result name does not match expected value."
assert result[1]["name"] == dataset_name2, "Result name does not match expected value."
result = await relational_engine.get_all_data_from_table("dataset_data")
assert len(result) == 2, "Unexpected number of dataset data relationships found."
assert result[0]["data_id"] == result[1]["data_id"], "Data item is not reused between datasets."
assert result[0]["dataset_id"] != result[1]["dataset_id"], "Dataset items are not different."
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
# Test deduplication of text input
text = """A quantum computer is a computer that takes advantage of quantum mechanical phenomena.
At small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior, specifically quantum superposition and entanglement, using specialized hardware that supports the preparation and manipulation of quantum states.
Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster (with respect to input size scaling) than any modern "classical" computer. In particular, a large-scale quantum computer could break widely used encryption schemes and aid physicists in performing physical simulations; however, the current state of the technology is largely experimental and impractical, with several obstacles to useful applications. Moreover, scalable quantum computers do not hold promise for many practical tasks, and for many important tasks quantum speedups are proven impossible.
The basic unit of information in quantum computing is the qubit, similar to the bit in traditional digital electronics. Unlike a classical bit, a qubit can exist in a superposition of its two "basis" states. When measuring a qubit, the result is a probabilistic output of a classical bit, therefore making quantum computers nondeterministic in general. If a quantum computer manipulates the qubit in a particular way, wave interference effects can amplify the desired measurement results. The design of quantum algorithms involves creating procedures that allow a quantum computer to perform calculations efficiently and quickly.
Physically engineering high-quality qubits has proven challenging. If a physical qubit is not sufficiently isolated from its environment, it suffers from quantum decoherence, introducing noise into calculations. Paradoxically, perfectly isolating qubits is also undesirable because quantum computations typically need to initialize qubits, perform controlled qubit interactions, and measure the resulting quantum states. Each of those operations introduces errors and suffers from noise, and such inaccuracies accumulate.
In principle, a non-quantum (classical) computer can solve the same computational problems as a quantum computer, given enough time. Quantum advantage comes in the form of time complexity rather than computability, and quantum complexity theory shows that some quantum algorithms for carefully selected tasks require exponentially fewer computational steps than the best known non-quantum algorithms. Such tasks can in theory be solved on a large-scale quantum computer whereas classical computers would not finish computations in any reasonable amount of time. However, quantum speedup is not universal or even typical across computational tasks, since basic tasks such as sorting are proven to not allow any asymptotic quantum speedup. Claims of quantum supremacy have drawn significant attention to the discipline, but are demonstrated on contrived tasks, while near-term practical use cases remain limited.
"""
await cognee.add([text], dataset_name)
await cognee.add([text], dataset_name2)
result = await relational_engine.get_all_data_from_table("data")
assert len(result) == 1, "More than one data entity was found."
assert hashlib.md5(text.encode('utf-8')).hexdigest() in result[0]["name"], "Content hash is not a part of file name."
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
# Test deduplication of image files
explanation_file_path = os.path.join(
pathlib.Path(__file__).parent, "test_data/example.png"
)
explanation_file_path2 = os.path.join(
pathlib.Path(__file__).parent, "test_data/example_copy.png"
)
await cognee.add([explanation_file_path], dataset_name)
await cognee.add([explanation_file_path2], dataset_name2)
result = await relational_engine.get_all_data_from_table("data")
assert len(result) == 1, "More than one data entity was found."
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
# Test deduplication of sound files
explanation_file_path = os.path.join(
pathlib.Path(__file__).parent, "test_data/text_to_speech.mp3"
)
explanation_file_path2 = os.path.join(
pathlib.Path(__file__).parent, "test_data/text_to_speech_copy.mp3"
)
await cognee.add([explanation_file_path], dataset_name)
await cognee.add([explanation_file_path2], dataset_name2)
result = await relational_engine.get_all_data_from_table("data")
assert len(result) == 1, "More than one data entity was found."
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
async def test_deduplication_postgres():
cognee.config.set_vector_db_config(
{
"vector_db_url": "",
"vector_db_key": "",
"vector_db_provider": "pgvector"
}
)
cognee.config.set_relational_db_config(
{
"db_name": "cognee_db",
"db_host": "127.0.0.1",
"db_port": "5432",
"db_username": "cognee",
"db_password": "cognee",
"db_provider": "postgres",
}
)
await test_deduplication()
async def test_deduplication_sqlite():
cognee.config.set_vector_db_config(
{
"vector_db_url": "",
"vector_db_key": "",
"vector_db_provider": "lancedb"
}
)
cognee.config.set_relational_db_config(
{
"db_provider": "sqlite",
}
)
await test_deduplication()
async def main():
data_directory_path = str(
pathlib.Path(
os.path.join(pathlib.Path(__file__).parent, ".data_storage/test_deduplication")
).resolve()
)
cognee.config.data_root_directory(data_directory_path)
cognee_directory_path = str(
pathlib.Path(
os.path.join(pathlib.Path(__file__).parent, ".cognee_system/test_deduplication")
).resolve()
)
cognee.config.system_root_directory(cognee_directory_path)
await test_deduplication_postgres()
await test_deduplication_sqlite()
if __name__ == "__main__":
import asyncio
asyncio.run(main())

View file

@ -73,10 +73,13 @@ async def test_circular_reference_extraction():
nodes = []
edges = []
added_nodes = {}
added_edges = {}
start = time.perf_counter_ns()
results = await asyncio.gather(*[
get_graph_from_model(code_file) for code_file in code_files
get_graph_from_model(code_file, added_nodes = added_nodes, added_edges = added_edges) for code_file in code_files
])
time_to_run = time.perf_counter_ns() - start
@ -87,12 +90,6 @@ async def test_circular_reference_extraction():
nodes.extend(result_nodes)
edges.extend(result_edges)
# for code_file in code_files:
# model_nodes, model_edges = get_graph_from_model(code_file)
# nodes.extend(model_nodes)
# edges.extend(model_edges)
assert len(nodes) == 1501
assert len(edges) == 1501 * 20 + 1500 * 5

View file

@ -0,0 +1,69 @@
import asyncio
import random
from typing import List
from uuid import uuid5, NAMESPACE_OID
from cognee.infrastructure.engine import DataPoint
from cognee.modules.graph.utils import get_graph_from_model
class Document(DataPoint):
path: str
class DocumentChunk(DataPoint):
part_of: Document
text: str
contains: List["Entity"] = None
class EntityType(DataPoint):
name: str
class Entity(DataPoint):
name: str
is_type: EntityType
DocumentChunk.model_rebuild()
async def get_graph_from_model_test():
document = Document(path = "file_path")
document_chunks = [DocumentChunk(
id = uuid5(NAMESPACE_OID, f"file{file_index}"),
text = "some text",
part_of = document,
contains = [],
) for file_index in range(1)]
for document_chunk in document_chunks:
document_chunk.contains.append(Entity(
name = f"Entity",
is_type = EntityType(
name = "Type 1",
),
))
nodes = []
edges = []
added_nodes = {}
added_edges = {}
visited_properties = {}
results = await asyncio.gather(*[
get_graph_from_model(
document_chunk,
added_nodes = added_nodes,
added_edges = added_edges,
visited_properties = visited_properties,
) for document_chunk in document_chunks
])
for result_nodes, result_edges in results:
nodes.extend(result_nodes)
edges.extend(result_edges)
assert len(nodes) == 4
assert len(edges) == 3
if __name__ == "__main__":
asyncio.run(get_graph_from_model_test())

View file

@ -64,7 +64,6 @@ async def generate_patch_with_cognee(instance, llm_client, search_type=SearchTyp
tasks = [
Task(get_repo_file_dependencies),
Task(add_data_points, task_config = { "batch_size": 50 }),
Task(enrich_dependency_graph, task_config = { "batch_size": 50 }),
Task(expand_dependency_graph, task_config = { "batch_size": 50 }),
Task(add_data_points, task_config = { "batch_size": 50 }),

4
licenses/README.md Normal file
View file

@ -0,0 +1,4 @@
# Third party licenses
This folder contains the licenses of third-party open-source software that has been redistributed in this project.
Details of included files and modifications can be found in [NOTICE](/NOTICE.md).

View file

@ -265,7 +265,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "df16431d0f48b006",
"metadata": {
"ExecuteTime": {
@ -304,7 +304,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"id": "9086abf3af077ab4",
"metadata": {
"ExecuteTime": {
@ -349,7 +349,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "a9de0cc07f798b7f",
"metadata": {
"ExecuteTime": {
@ -393,7 +393,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"id": "185ff1c102d06111",
"metadata": {
"ExecuteTime": {
@ -437,7 +437,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"id": "d55ce4c58f8efb67",
"metadata": {
"ExecuteTime": {
@ -479,7 +479,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"id": "ca4ecc32721ad332",
"metadata": {
"ExecuteTime": {
@ -529,7 +529,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"id": "bce39dc6",
"metadata": {},
"outputs": [],
@ -622,7 +622,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"id": "7c431fdef4921ae0",
"metadata": {
"ExecuteTime": {
@ -654,13 +654,13 @@
" Task(classify_documents),\n",
" Task(check_permissions_on_documents, user = user, permissions = [\"write\"]),\n",
" Task(extract_chunks_from_documents), # Extract text chunks based on the document type.\n",
" Task(add_data_points, task_config = { \"batch_size\": 10 }),\n",
" Task(extract_graph_from_data, graph_model = KnowledgeGraph, task_config = { \"batch_size\": 10 }), # Generate knowledge graphs from the document chunks.\n",
" Task(\n",
" summarize_text,\n",
" summarization_model = cognee_config.summarization_model,\n",
" task_config = { \"batch_size\": 10 }\n",
" ),\n",
" Task(add_data_points, task_config = { \"batch_size\": 10 }),\n",
" ]\n",
"\n",
" pipeline = run_tasks(tasks, data_documents)\n",
@ -883,7 +883,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
"version": "3.11.8"
}
},
"nbformat": 4,

View file

@ -28,10 +28,27 @@ if __name__ == "__main__":
society = create_organization_recursive(
"society", "Society", PERSON_NAMES, args.recursive_depth
)
nodes, edges = asyncio.run(get_graph_from_model(society))
added_nodes = {}
added_edges = {}
visited_properties = {}
nodes, edges = asyncio.run(get_graph_from_model(
society,
added_nodes = added_nodes,
added_edges = added_edges,
visited_properties = visited_properties,
))
def get_graph_from_model_sync(model):
return asyncio.run(get_graph_from_model(model))
added_nodes = {}
added_edges = {}
visited_properties = {}
return asyncio.run(get_graph_from_model(
model,
added_nodes = added_nodes,
added_edges = added_edges,
visited_properties = visited_properties,
))
results = benchmark_function(get_graph_from_model_sync, society, num_runs=args.runs)
print("\nBenchmark Results:")