diff --git a/README.md b/README.md index 28d5858a0..ed4489fbf 100644 --- a/README.md +++ b/README.md @@ -105,37 +105,65 @@ import asyncio from cognee.api.v1.search import SearchType async def main(): - # Reset cognee data + # Create a clean slate for cognee -- reset data and system state + print("Resetting cognee data...") await cognee.prune.prune_data() - # Reset cognee system state await cognee.prune.prune_system(metadata=True) + print("Data reset complete.\n") + # cognee knowledge graph will be created based on this text text = """ Natural language processing (NLP) is an interdisciplinary subfield of computer science and information retrieval. """ - - # Add text to cognee + + print("Adding text to cognee:") + print(text.strip()) + # Add the text, and make it available for cognify await cognee.add(text) + print("Text added successfully.\n") + + print("Running cognify to create knowledge graph...\n") + print("Cognify process steps:") + print("1. Classifying the document: Determining the type and category of the input text.") + print("2. Checking permissions: Ensuring the user has the necessary rights to process the text.") + print("3. Extracting text chunks: Breaking down the text into sentences or phrases for analysis.") + print("4. Adding data points: Storing the extracted chunks for processing.") + print("5. Generating knowledge graph: Extracting entities and relationships to form a knowledge graph.") + print("6. Summarizing text: Creating concise summaries of the content for quick insights.\n") + # Use LLMs and cognee to create knowledge graph await cognee.cognify() + print("Cognify process complete.\n") - # Search cognee for insights + + query_text = 'Tell me about NLP' + print(f"Searching cognee for insights with query: '{query_text}'") + # Query cognee for insights on the added text search_results = await cognee.search( - SearchType.INSIGHTS, - "Tell me about NLP", + SearchType.INSIGHTS, query_text=query_text ) - + + print("Search results:") # Display results for result_text in search_results: print(result_text) - # natural_language_processing is_a field - # natural_language_processing is_subfield_of computer_science - # natural_language_processing is_subfield_of information_retrieval -asyncio.run(main()) + # Example output: + # ({'id': UUID('bc338a39-64d6-549a-acec-da60846dd90d'), 'updated_at': datetime.datetime(2024, 11, 21, 12, 23, 1, 211808, tzinfo=datetime.timezone.utc), 'name': 'natural language processing', 'description': 'An interdisciplinary subfield of computer science and information retrieval.'}, {'relationship_name': 'is_a_subfield_of', 'source_node_id': UUID('bc338a39-64d6-549a-acec-da60846dd90d'), 'target_node_id': UUID('6218dbab-eb6a-5759-a864-b3419755ffe0'), 'updated_at': datetime.datetime(2024, 11, 21, 12, 23, 15, 473137, tzinfo=datetime.timezone.utc)}, {'id': UUID('6218dbab-eb6a-5759-a864-b3419755ffe0'), 'updated_at': datetime.datetime(2024, 11, 21, 12, 23, 1, 211808, tzinfo=datetime.timezone.utc), 'name': 'computer science', 'description': 'The study of computation and information processing.'}) + # (...) + # + # It represents nodes and relationships in the knowledge graph: + # - The first element is the source node (e.g., 'natural language processing'). + # - The second element is the relationship between nodes (e.g., 'is_a_subfield_of'). + # - The third element is the target node (e.g., 'computer science'). + +if __name__ == '__main__': + asyncio.run(main()) + ``` +When you run this script, you will see step-by-step messages in the console that help you trace the execution flow and understand what the script is doing at each stage. A version of this example is here: `examples/python/simple_example.py` ### Create your own memory store diff --git a/examples/python/simple_example.py b/examples/python/simple_example.py index 47940ca6e..55b07c4c3 100644 --- a/examples/python/simple_example.py +++ b/examples/python/simple_example.py @@ -1,5 +1,4 @@ import asyncio - import cognee from cognee.api.v1.search import SearchType @@ -11,29 +10,57 @@ from cognee.api.v1.search import SearchType async def main(): # Create a clean slate for cognee -- reset data and system state + print("Resetting cognee data...") await cognee.prune.prune_data() await cognee.prune.prune_system(metadata=True) + print("Data reset complete.\n") # cognee knowledge graph will be created based on this text text = """ Natural language processing (NLP) is an interdisciplinary subfield of computer science and information retrieval. """ - + + print("Adding text to cognee:") + print(text.strip()) # Add the text, and make it available for cognify await cognee.add(text) + print("Text added successfully.\n") + + print("Running cognify to create knowledge graph...\n") + print("Cognify process steps:") + print("1. Classifying the document: Determining the type and category of the input text.") + print("2. Checking permissions: Ensuring the user has the necessary rights to process the text.") + print("3. Extracting text chunks: Breaking down the text into sentences or phrases for analysis.") + print("4. Adding data points: Storing the extracted chunks for processing.") + print("5. Generating knowledge graph: Extracting entities and relationships to form a knowledge graph.") + print("6. Summarizing text: Creating concise summaries of the content for quick insights.\n") + # Use LLMs and cognee to create knowledge graph await cognee.cognify() + print("Cognify process complete.\n") + + query_text = 'Tell me about NLP' + print(f"Searching cognee for insights with query: '{query_text}'") # Query cognee for insights on the added text search_results = await cognee.search( - SearchType.INSIGHTS, query_text='Tell me about NLP' + SearchType.INSIGHTS, query_text=query_text ) - - # Display search results + + print("Search results:") + # Display results for result_text in search_results: print(result_text) + # Example output: + # ({'id': UUID('bc338a39-64d6-549a-acec-da60846dd90d'), 'updated_at': datetime.datetime(2024, 11, 21, 12, 23, 1, 211808, tzinfo=datetime.timezone.utc), 'name': 'natural language processing', 'description': 'An interdisciplinary subfield of computer science and information retrieval.'}, {'relationship_name': 'is_a_subfield_of', 'source_node_id': UUID('bc338a39-64d6-549a-acec-da60846dd90d'), 'target_node_id': UUID('6218dbab-eb6a-5759-a864-b3419755ffe0'), 'updated_at': datetime.datetime(2024, 11, 21, 12, 23, 15, 473137, tzinfo=datetime.timezone.utc)}, {'id': UUID('6218dbab-eb6a-5759-a864-b3419755ffe0'), 'updated_at': datetime.datetime(2024, 11, 21, 12, 23, 1, 211808, tzinfo=datetime.timezone.utc), 'name': 'computer science', 'description': 'The study of computation and information processing.'}) + # (...) + # It represents nodes and relationships in the knowledge graph: + # - The first element is the source node (e.g., 'natural language processing'). + # - The second element is the relationship between nodes (e.g., 'is_a_subfield_of'). + # - The third element is the target node (e.g., 'computer science'). + if __name__ == '__main__': asyncio.run(main())