From d287391ae6be42f01d735429af70b07995f96596 Mon Sep 17 00:00:00 2001
From: Vasilije <8619304+Vasilije1990@users.noreply.github.com>
Date: Tue, 12 Mar 2024 09:46:32 +0100
Subject: [PATCH] Add utils for graph visualization + classification nodes
---
README.md | 141 ++++++++++++++++++++++++++++++------------------------
1 file changed, 78 insertions(+), 63 deletions(-)
diff --git a/README.md b/README.md
index f49559176..c836cb0f0 100644
--- a/README.md
+++ b/README.md
@@ -1,6 +1,6 @@
# cognee
-AI Memory - Cognitive Architecture, Testability, Production-Ready Apps
+Semantic AI Memory
@@ -27,71 +27,93 @@ AI Memory - Cognitive Architecture, Testability, Production-Ready Apps
+[//]: # ()
+
+[//]: # ( Share cognee Repository)
+
+[//]: # (
)
+
+[//]: # ()
+
+[//]: # ( )
+
+[//]: # (
)
+
+[//]: # ( )
+
+[//]: # ( )
+
+[//]: # (
)
+
+[//]: # ( )
+
+[//]: # ( )
+
+[//]: # (
)
+
+[//]: # ( )
+
+[//]: # ( )
+
+[//]: # (
)
+
+[//]: # ( )
+
+[//]: # ( )
+
+[//]: # (
)
+
+[//]: # ( )
+
+[//]: # ( )
+
+[//]: # (
)
+
+[//]: # ( )
+
+[//]: # (
)
+
+[//]: # ()
+[//]: # (
)
+
+[//]: # ()
+[//]: # ([Star us on Github!](https://www.github.com/topoteretes/cognee))
+
+[//]: # ()
+[//]: # (Cognee runs in iterations, from POC towards production-ready code.)
+
- Share cognee Repository
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-[Star us on Github!](https://www.github.com/topoteretes/cognee)
-
-Jump into AI memory architecture, inspired by human cognitive processes, using Python.
-Cognee runs in iterations, from POC towards production-ready code.
-
-To read more about the approach and details on cognitive architecture, see the blog post: AI Applications and RAGs - Cognitive Architecture, Testability, Production Ready Apps
Try it yourself on Whatsapp with one of our partners by typing `/save {content you want to save}` followed by `/query {knowledge you saved previously}`
+
+
+
+## 📦 Installation
+
+With pip:
+
+```bash
+pip install cognee
+```
+
+With poetry:
+
+```bash
+poetry add cognee
+```
-## Getting started
+## 💻 Usage
-### Run with Docker
+```cognee.add()``` - Add a new piece of information to storage
-To run cognee you need to have Docker installed on your machine.
+```cognee.cognify() ``` - Use LLMs to create graphs
-Run Cognee in a couple of steps:
-- Run `cp .env.template .env` in your terminal and set all the environment variables
-- Run `docker compose up` in order to start graph and relational databases
-- Run `docker compose up cognee` in order start Cognee
+```cognee.search()``` - Query the graph for a piece of information
-#### Debugging
-To run Cognee with debugger attached you need to build the Cognee image with the `DEBUG` flag set to true.
-
-- `docker compose build cognee --no-cache --build-arg DEBUG=true`
-- `docker compose up cognee`
-
-
-### Run without Docker
-- Run `PYTHONPATH=. python cognitive_architecture/setup_database.py` to setup database
-- Run `python -m gunicorn -w 1 -k uvicorn.workers.UvicornWorker -t 30000 --bind=127.0.0.1:8000 --log-level debug api:app`
-
-#### Debugging
-- Run `python -m debugpy --wait-for-client --listen localhost:5678 -m gunicorn -w 1 -k uvicorn.workers.UvicornWorker -t 30000 --bind=127.0.0.1:8000 --log-level debug api:app`
-- Attach debugger
-
-
## Demo
@@ -111,10 +133,3 @@ Our framework for the OpenAI, Graph (Neo4j) and Vector (Weaviate) databases intr

-## Current Focus
-
-### Integration with keepi.ai and other apps
-- Cognee uses the Neo4j graph database to map user data into a graph structure consisting of semantic, episodic, and procedural memory.
-- Stores data and files through the WhatsApp chatbot keepi.ai
-- Uses the graph to answer user queries and store new information in the graph.
-