diff --git a/README.md b/README.md index f49559176..c836cb0f0 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # cognee -AI Memory - Cognitive Architecture, Testability, Production-Ready Apps +Semantic AI Memory

@@ -27,71 +27,93 @@ AI Memory - Cognitive Architecture, Testability, Production-Ready Apps

+[//]: # (

) + +[//]: # ( Share cognee Repository) + +[//]: # (

) + +[//]: # (

) + +[//]: # ( ) + +[//]: # ( Follow Cognee) + +[//]: # ( ) + +[//]: # ( ) + +[//]: # ( Share on Telegram) + +[//]: # ( ) + +[//]: # ( ) + +[//]: # ( ) + +[//]: # ( ) + +[//]: # ( ) + +[//]: # ( Share on Reddit) + +[//]: # ( ) + +[//]: # ( ) + +[//]: # ( ) + +[//]: # ( ) + +[//]: # ( ) + +[//]: # ( Buy Me A Coffee) + +[//]: # ( ) + +[//]: # (

) + +[//]: # () +[//]: # (
) + +[//]: # () +[//]: # ([Star us on Github!](https://www.github.com/topoteretes/cognee)) + +[//]: # () +[//]: # (Cognee runs in iterations, from POC towards production-ready code.) +

- Share cognee Repository -

-

- - Follow Cognee - - - Share on Telegram - - - - - - Share on Reddit - - - - - - Buy Me A Coffee - -

- -
- -[Star us on Github!](https://www.github.com/topoteretes/cognee) - -Jump into AI memory architecture, inspired by human cognitive processes, using Python. -Cognee runs in iterations, from POC towards production-ready code. - -To read more about the approach and details on cognitive architecture, see the blog post: AI Applications and RAGs - Cognitive Architecture, Testability, Production Ready Apps Try it yourself on Whatsapp with one of our partners by typing `/save {content you want to save}` followed by `/query {knowledge you saved previously}` +

+ + +## 📦 Installation + +With pip: + +```bash +pip install cognee +``` + +With poetry: + +```bash +poetry add cognee +``` -## Getting started +## 💻 Usage -### Run with Docker +```cognee.add()``` - Add a new piece of information to storage -To run cognee you need to have Docker installed on your machine. +```cognee.cognify() ``` - Use LLMs to create graphs -Run Cognee in a couple of steps: -- Run `cp .env.template .env` in your terminal and set all the environment variables -- Run `docker compose up` in order to start graph and relational databases -- Run `docker compose up cognee` in order start Cognee +```cognee.search()``` - Query the graph for a piece of information -#### Debugging -To run Cognee with debugger attached you need to build the Cognee image with the `DEBUG` flag set to true. - -- `docker compose build cognee --no-cache --build-arg DEBUG=true` -- `docker compose up cognee` - - -### Run without Docker -- Run `PYTHONPATH=. python cognitive_architecture/setup_database.py` to setup database -- Run `python -m gunicorn -w 1 -k uvicorn.workers.UvicornWorker -t 30000 --bind=127.0.0.1:8000 --log-level debug api:app` - -#### Debugging -- Run `python -m debugpy --wait-for-client --listen localhost:5678 -m gunicorn -w 1 -k uvicorn.workers.UvicornWorker -t 30000 --bind=127.0.0.1:8000 --log-level debug api:app` -- Attach debugger - - ## Demo @@ -111,10 +133,3 @@ Our framework for the OpenAI, Graph (Neo4j) and Vector (Weaviate) databases intr ![Image](assets/architecture.png) -## Current Focus - -### Integration with keepi.ai and other apps -- Cognee uses the Neo4j graph database to map user data into a graph structure consisting of semantic, episodic, and procedural memory. -- Stores data and files through the WhatsApp chatbot keepi.ai -- Uses the graph to answer user queries and store new information in the graph. -