Add evals for cognee

This commit is contained in:
Vasilije 2024-05-19 22:39:47 +02:00
parent 2657aa7096
commit d099cae128
2 changed files with 45 additions and 17 deletions

View file

@ -22,8 +22,10 @@ dotenv.load_dotenv()
dataset = EvaluationDataset()
dataset.generate_goldens_from_docs(
document_paths=['soldiers_home.pdf'],
max_goldens_per_document=10
document_paths=['natural_language_processing.txt', 'soldiers_home.pdf', 'trump.txt'],
max_goldens_per_document=10,
num_evolutions=5,
enable_breadth_evolve=True,
)

View file

@ -13,14 +13,32 @@ from cognee.infrastructure.llm.get_llm_client import get_llm_client
dataset = EvaluationDataset()
dataset.add_test_cases_from_json_file(
# file_path is the absolute path to you .json file
file_path="synthetic_data/20240519_185842.json",
input_key_name="query",
file_path="./synthetic_data/20240519_185842.json",
input_key_name="input",
actual_output_key_name="actual_output",
expected_output_key_name="expected_output",
context_key_name="context",
retrieval_context_key_name="retrieval_context",
context_key_name="context"
)
print(dataset)
# from deepeval.synthesizer import Synthesizer
#
# synthesizer = Synthesizer(model="gpt-3.5-turbo")
#
# dataset = EvaluationDataset()
# dataset.generate_goldens_from_docs(
# synthesizer=synthesizer,
# document_paths=['natural_language_processing.txt', 'soldiers_home.pdf', 'trump.txt'],
# max_goldens_per_document=10,
# num_evolutions=5,
# enable_breadth_evolve=True,
# )
print(dataset.goldens)
print(dataset)
import logging
@ -29,43 +47,51 @@ from cognee.infrastructure import infrastructure_config
logger = logging.getLogger(__name__)
def AnswerModel(BaseModel):
class AnswerModel(BaseModel):
response:str
def get_answer_base(content: str, response_model: Type[BaseModel]):
def get_answer_base(content: str, context:str, response_model: Type[BaseModel]):
llm_client = get_llm_client()
system_prompt = "Answer the following question: and use the context"
system_prompt = "THIS IS YOUR CONTEXT:" + str(context)
return llm_client.create_structured_output(content, system_prompt, response_model)
def get_answer(content: str, model: Type[BaseModel]= AnswerModel):
def get_answer(content: str,context, model: Type[BaseModel]= AnswerModel):
try:
return (get_answer_base(
content,
context,
model
))
except Exception as error:
logger.error("Error extracting cognitive layers from content: %s", error, exc_info = True)
raise error
def run_cognify_base_rag_and_search():
pass
def run_cognify_and_search():
pass
def convert_goldens_to_test_cases(goldens: List[Golden]) -> List[LLMTestCase]:
def convert_goldens_to_test_cases(test_cases_raw: List[LLMTestCase]) -> List[LLMTestCase]:
test_cases = []
for golden in goldens:
for case in test_cases_raw:
test_case = LLMTestCase(
input=golden.input,
input=case.input,
# Generate actual output using the 'input' and 'additional_metadata'
actual_output= get_answer(golden.input),
expected_output=golden.expected_output,
context=golden.context,
actual_output= str(get_answer(case.input, case.context).model_dump()['response']),
expected_output=case.expected_output,
context=case.context,
retrieval_context=["retrieval_context"],
)
test_cases.append(test_case)
return test_cases
# Data preprocessing before setting the dataset test cases
dataset.test_cases = convert_goldens_to_test_cases(dataset.goldens)
dataset.test_cases = convert_goldens_to_test_cases(dataset.test_cases)
from deepeval.metrics import HallucinationMetric