From cbd15b98a575b54d26f62dc17aeff1f9f3dfcebf Mon Sep 17 00:00:00 2001 From: vasilije Date: Sun, 5 Jan 2025 20:24:04 +0100 Subject: [PATCH] Fix linter issues --- notebooks/cognee_demo.ipynb | 97 ++++++++++++++++--------------------- 1 file changed, 42 insertions(+), 55 deletions(-) diff --git a/notebooks/cognee_demo.ipynb b/notebooks/cognee_demo.ipynb index 312ca0e65..f59f6338c 100644 --- a/notebooks/cognee_demo.ipynb +++ b/notebooks/cognee_demo.ipynb @@ -1112,16 +1112,16 @@ }, "cell_type": "code", "source": [ - "from evals.eval_on_hotpot import eval_on_hotpotQA\n", - "from evals.eval_on_hotpot import answer_with_cognee\n", - "from evals.eval_on_hotpot import answer_without_cognee\n", - "from evals.eval_on_hotpot import eval_answers\n", - "from cognee.base_config import get_base_config\n", - "from pathlib import Path\n", - "from tqdm import tqdm\n", - "import wget\n", - "import json\n", - "import statistics" + "# from evals.eval_on_hotpot import eval_on_hotpotQA\n", + "# from evals.eval_on_hotpot import answer_with_cognee\n", + "# from evals.eval_on_hotpot import answer_without_cognee\n", + "# from evals.eval_on_hotpot import eval_answers\n", + "# from cognee.base_config import get_base_config\n", + "# from pathlib import Path\n", + "# from tqdm import tqdm\n", + "# import wget\n", + "# import json\n", + "# import statistics" ], "id": "5f36b67668fdb646", "outputs": [], @@ -1136,27 +1136,27 @@ }, "cell_type": "code", "source": [ - "answer_provider = answer_without_cognee # For native LLM answers use answer_without_cognee\n", - "num_samples = 10 # With cognee, it takes ~1m10s per sample\n", - "\n", - "base_config = get_base_config()\n", - "data_root_dir = base_config.data_root_directory\n", - "\n", - "if not Path(data_root_dir).exists():\n", - " Path(data_root_dir).mkdir()\n", - "\n", - "filepath = data_root_dir / Path(\"hotpot_dev_fullwiki_v1.json\")\n", - "if not filepath.exists():\n", - " url = 'http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_dev_fullwiki_v1.json'\n", - " wget.download(url, out=data_root_dir)\n", - "\n", - "with open(filepath, \"r\") as file:\n", - " dataset = json.load(file)\n", - "instances = dataset if not num_samples else dataset[:num_samples]\n", - "answers = []\n", - "for instance in tqdm(instances, desc=\"Getting answers\"):\n", - " answer = await answer_provider(instance)\n", - " answers.append(answer)" + "# answer_provider = answer_without_cognee # For native LLM answers use answer_without_cognee\n", + "# num_samples = 10 # With cognee, it takes ~1m10s per sample\n", + "# \n", + "# base_config = get_base_config()\n", + "# data_root_dir = base_config.data_root_directory\n", + "# \n", + "# if not Path(data_root_dir).exists():\n", + "# Path(data_root_dir).mkdir()\n", + "# \n", + "# filepath = data_root_dir / Path(\"hotpot_dev_fullwiki_v1.json\")\n", + "# if not filepath.exists():\n", + "# url = 'http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_dev_fullwiki_v1.json'\n", + "# wget.download(url, out=data_root_dir)\n", + "# \n", + "# with open(filepath, \"r\") as file:\n", + "# dataset = json.load(file)\n", + "# instances = dataset if not num_samples else dataset[:num_samples]\n", + "# answers = []\n", + "# for instance in tqdm(instances, desc=\"Getting answers\"):\n", + "# answer = await answer_provider(instance)\n", + "# answers.append(answer)" ], "id": "d5af4b516c6621a3", "outputs": [ @@ -1179,8 +1179,8 @@ }, "cell_type": "code", "source": [ - "from evals.deepeval_metrics import f1_score_metric\n", - "from evals.deepeval_metrics import em_score_metric" + "# from evals.deepeval_metrics import f1_score_metric\n", + "# from evals.deepeval_metrics import em_score_metric" ], "id": "2bf69048a272158c", "outputs": [], @@ -1195,10 +1195,10 @@ }, "cell_type": "code", "source": [ - "f1_metric = f1_score_metric()\n", - "eval_results = await eval_answers(instances, answers, f1_metric)\n", - "avg_f1_score = statistics.mean([result.metrics_data[0].score for result in eval_results.test_results])\n", - "print(\"F1 score: \", avg_f1_score)" + "# f1_metric = f1_score_metric()\n", + "# eval_results = await eval_answers(instances, answers, f1_metric)\n", + "# avg_f1_score = statistics.mean([result.metrics_data[0].score for result in eval_results.test_results])\n", + "# print(\"F1 score: \", avg_f1_score)" ], "id": "72ba5f89cccbee6b", "outputs": [ @@ -1421,28 +1421,15 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-12-24T15:26:14.946766Z", - "start_time": "2024-12-24T15:26:14.944741Z" + "end_time": "2025-01-05T19:23:30.332977Z", + "start_time": "2025-01-05T19:23:30.331538Z" } }, "cell_type": "code", - "source": [ - "for n in range(1,4):\n", - " print(n)" - ], + "source": "", "id": "783985c35d1126de", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "2\n", - "3\n" - ] - } - ], - "execution_count": 38 + "outputs": [], + "execution_count": null }, { "cell_type": "markdown",