Merge branch 'dev' into COG-650-replace-pylint

This commit is contained in:
Vasilije 2024-12-26 21:02:46 +01:00 committed by GitHub
commit c8fdbb45c4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
13 changed files with 232 additions and 38 deletions

View file

@ -17,7 +17,9 @@ Try it in a Google Colab <a href="https://colab.research.google.com/drive/1g-Qn
If you have questions, join our <a href="https://discord.gg/NQPKmU5CCg">Discord</a> community
<div align="center">
<img src="assets/cognee_benefits.png" alt="why cognee" width="80%" />
</div>
## 📦 Installation
You can install Cognee using either **pip** or **poetry**.

BIN
assets/cognee_benefits.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 353 KiB

View file

@ -3,6 +3,8 @@ import logging
from pathlib import Path
from cognee.base_config import get_base_config
from cognee.infrastructure.databases.vector.embeddings import \
get_embedding_engine
from cognee.modules.cognify.config import get_cognify_config
from cognee.modules.pipelines import run_tasks
from cognee.modules.pipelines.tasks.Task import Task
@ -15,8 +17,10 @@ from cognee.tasks.ingestion import ingest_data_with_metadata
from cognee.tasks.repo_processor import (enrich_dependency_graph,
expand_dependency_graph,
get_data_list_for_user,
get_non_code_files,
get_non_py_files,
get_repo_file_dependencies)
from cognee.tasks.repo_processor.get_source_code_chunks import \
get_source_code_chunks
from cognee.tasks.storage import add_data_points
monitoring = get_base_config().monitoring_tool
@ -28,6 +32,7 @@ from cognee.tasks.summarization import summarize_code, summarize_text
logger = logging.getLogger("code_graph_pipeline")
update_status_lock = asyncio.Lock()
@observe
async def run_code_graph_pipeline(repo_path, include_docs=True):
import os
@ -46,20 +51,23 @@ async def run_code_graph_pipeline(repo_path, include_docs=True):
await cognee.prune.prune_system(metadata=True)
await create_db_and_tables()
embedding_engine = get_embedding_engine()
cognee_config = get_cognify_config()
user = await get_default_user()
tasks = [
Task(get_repo_file_dependencies),
Task(enrich_dependency_graph, task_config={"batch_size": 50}),
Task(enrich_dependency_graph),
Task(expand_dependency_graph, task_config={"batch_size": 50}),
Task(get_source_code_chunks, embedding_model=embedding_engine.model, task_config={"batch_size": 50}),
Task(summarize_code, task_config={"batch_size": 50}),
Task(add_data_points, task_config={"batch_size": 50}),
]
if include_docs:
non_code_tasks = [
Task(get_non_code_files, task_config={"batch_size": 50}),
Task(get_non_py_files, task_config={"batch_size": 50}),
Task(ingest_data_with_metadata, dataset_name="repo_docs", user=user),
Task(get_data_list_for_user, dataset_name="repo_docs", user=user),
Task(classify_documents),
@ -71,7 +79,7 @@ async def run_code_graph_pipeline(repo_path, include_docs=True):
task_config={"batch_size": 50}
),
]
if include_docs:
async for result in run_tasks(non_code_tasks, repo_path):
yield result

View file

@ -0,0 +1,3 @@
class EmbeddingException(Exception):
"""Custom exception for handling embedding-related errors."""
pass

View file

@ -5,17 +5,19 @@ from typing import List, Optional
import litellm
import os
from cognee.infrastructure.databases.vector.embeddings.EmbeddingEngine import EmbeddingEngine
from cognee.infrastructure.databases.exceptions.EmbeddingException import EmbeddingException
litellm.set_verbose = False
logger = logging.getLogger("LiteLLMEmbeddingEngine")
class LiteLLMEmbeddingEngine(EmbeddingEngine):
api_key: str
endpoint: str
api_version: str
model: str
dimensions: int
mock:bool
mock: bool
def __init__(
self,
@ -33,7 +35,7 @@ class LiteLLMEmbeddingEngine(EmbeddingEngine):
enable_mocking = os.getenv("MOCK_EMBEDDING", "false")
if isinstance(enable_mocking, bool):
enable_mocking= str(enable_mocking).lower()
enable_mocking = str(enable_mocking).lower()
self.mock = enable_mocking in ("true", "1", "yes")
MAX_RETRIES = 5
@ -43,7 +45,7 @@ class LiteLLMEmbeddingEngine(EmbeddingEngine):
async def exponential_backoff(attempt):
wait_time = min(10 * (2 ** attempt), 60) # Max 60 seconds
await asyncio.sleep(wait_time)
try:
if self.mock:
response = {
@ -56,10 +58,10 @@ class LiteLLMEmbeddingEngine(EmbeddingEngine):
else:
response = await litellm.aembedding(
self.model,
input = text,
api_key = self.api_key,
api_base = self.endpoint,
api_version = self.api_version
input=text,
api_key=self.api_key,
api_base=self.endpoint,
api_version=self.api_version
)
self.retry_count = 0
@ -71,7 +73,7 @@ class LiteLLMEmbeddingEngine(EmbeddingEngine):
if len(text) == 1:
parts = [text]
else:
parts = [text[0:math.ceil(len(text)/2)], text[math.ceil(len(text)/2):]]
parts = [text[0:math.ceil(len(text) / 2)], text[math.ceil(len(text) / 2):]]
parts_futures = [self.embed_text(part) for part in parts]
embeddings = await asyncio.gather(*parts_futures)
@ -95,6 +97,9 @@ class LiteLLMEmbeddingEngine(EmbeddingEngine):
return await self.embed_text(text)
except (litellm.exceptions.BadRequestError, litellm.llms.OpenAI.openai.OpenAIError):
raise EmbeddingException("Failed to index data points.")
except Exception as error:
logger.error("Error embedding text: %s", str(error))
raise error

View file

@ -1,5 +1,4 @@
from typing import List, Optional
from cognee.infrastructure.engine import DataPoint
@ -7,7 +6,7 @@ class Repository(DataPoint):
__tablename__ = "Repository"
path: str
_metadata: dict = {
"index_fields": ["source_code"],
"index_fields": [],
"type": "Repository"
}
@ -19,29 +18,31 @@ class CodeFile(DataPoint):
depends_on: Optional[List["CodeFile"]] = None
depends_directly_on: Optional[List["CodeFile"]] = None
contains: Optional[List["CodePart"]] = None
_metadata: dict = {
"index_fields": ["source_code"],
"index_fields": [],
"type": "CodeFile"
}
class CodePart(DataPoint):
__tablename__ = "codepart"
# part_of: Optional[CodeFile]
source_code: str
# part_of: Optional[CodeFile] = None
source_code: Optional[str] = None
_metadata: dict = {
"index_fields": ["source_code"],
"index_fields": [],
"type": "CodePart"
}
class CodeRelationship(DataPoint):
source_id: str
target_id: str
relation: str # depends on or depends directly
class SourceCodeChunk(DataPoint):
__tablename__ = "sourcecodechunk"
code_chunk_of: Optional[CodePart] = None
source_code: Optional[str] = None
previous_chunk: Optional["SourceCodeChunk"] = None
_metadata: dict = {
"type": "CodeRelationship"
"index_fields": ["source_code"],
"type": "SourceCodeChunk"
}
CodeFile.model_rebuild()
CodePart.model_rebuild()
SourceCodeChunk.model_rebuild()

View file

@ -210,7 +210,6 @@ class SummarizedClass(BaseModel):
decorators: Optional[List[str]] = None
class SummarizedCode(BaseModel):
file_name: str
high_level_summary: str
key_features: List[str]
imports: List[str] = []

View file

@ -71,7 +71,7 @@ async def get_repo_file_dependencies(repo_path: str) -> AsyncGenerator[list, Non
path = repo_path,
)
yield repo
yield [repo]
with ProcessPoolExecutor(max_workers = 12) as executor:
loop = asyncio.get_event_loop()
@ -90,10 +90,11 @@ async def get_repo_file_dependencies(repo_path: str) -> AsyncGenerator[list, Non
results = await asyncio.gather(*tasks)
code_files = []
for (file_path, metadata), dependencies in zip(py_files_dict.items(), results):
source_code = metadata.get("source_code")
yield CodeFile(
code_files.append(CodeFile(
id = uuid5(NAMESPACE_OID, file_path),
source_code = source_code,
extracted_id = file_path,
@ -106,4 +107,6 @@ async def get_repo_file_dependencies(repo_path: str) -> AsyncGenerator[list, Non
source_code = py_files_dict.get(dependency, {}).get("source_code"),
) for dependency in dependencies
] if dependencies else None,
)
))
yield code_files

View file

@ -0,0 +1,164 @@
import logging
from typing import AsyncGenerator, Generator
from uuid import NAMESPACE_OID, uuid5
import parso
import tiktoken
from cognee.infrastructure.engine import DataPoint
from cognee.shared.CodeGraphEntities import CodeFile, CodePart, SourceCodeChunk
logger = logging.getLogger("task:get_source_code_chunks")
def _count_tokens(tokenizer: tiktoken.Encoding, source_code: str) -> int:
return len(tokenizer.encode(source_code))
def _get_naive_subchunk_token_counts(
tokenizer: tiktoken.Encoding, source_code: str, max_subchunk_tokens: int = 8000
) -> list[tuple[str, int]]:
"""Splits source code into subchunks of up to max_subchunk_tokens and counts tokens."""
token_ids = tokenizer.encode(source_code)
subchunk_token_counts = []
for start_idx in range(0, len(token_ids), max_subchunk_tokens):
subchunk_token_ids = token_ids[start_idx: start_idx + max_subchunk_tokens]
token_count = len(subchunk_token_ids)
subchunk = ''.join(
tokenizer.decode_single_token_bytes(token_id).decode('utf-8', errors='replace')
for token_id in subchunk_token_ids
)
subchunk_token_counts.append((subchunk, token_count))
return subchunk_token_counts
def _get_subchunk_token_counts(
tokenizer: tiktoken.Encoding,
source_code: str,
max_subchunk_tokens: int = 8000,
depth: int = 0,
max_depth: int = 100
) -> list[tuple[str, int]]:
"""Splits source code into subchunk and counts tokens for each subchunk."""
if depth > max_depth:
return _get_naive_subchunk_token_counts(tokenizer, source_code, max_subchunk_tokens)
try:
module = parso.parse(source_code)
except Exception as e:
logger.error(f"Error parsing source code: {e}")
return []
if not module.children:
logger.warning("Parsed module has no children (empty or invalid source code).")
return []
# Handle cases with only one real child and an EndMarker to prevent infinite recursion.
if len(module.children) <= 2:
module = module.children[0]
subchunk_token_counts = []
for child in module.children:
subchunk = child.get_code()
token_count = _count_tokens(tokenizer, subchunk)
if token_count == 0:
continue
if token_count <= max_subchunk_tokens:
subchunk_token_counts.append((subchunk, token_count))
continue
if child.type == 'string':
subchunk_token_counts.extend(_get_naive_subchunk_token_counts(tokenizer, subchunk, max_subchunk_tokens))
continue
subchunk_token_counts.extend(
_get_subchunk_token_counts(tokenizer, subchunk, max_subchunk_tokens, depth=depth + 1, max_depth=max_depth)
)
return subchunk_token_counts
def _get_chunk_source_code(
code_token_counts: list[tuple[str, int]], overlap: float, max_tokens: int
) -> tuple[list[tuple[str, int]], str]:
"""Generates a chunk of source code from tokenized subchunks with overlap handling."""
current_count = 0
cumulative_counts = []
current_source_code = ''
for i, (child_code, token_count) in enumerate(code_token_counts):
current_count += token_count
cumulative_counts.append(current_count)
if current_count > max_tokens:
break
current_source_code += f"\n{child_code}"
if current_count <= max_tokens:
return [], current_source_code.strip()
cutoff = 1
for i, cum_count in enumerate(cumulative_counts):
if cum_count > (1 - overlap) * max_tokens:
break
cutoff = i
return code_token_counts[cutoff:], current_source_code.strip()
def get_source_code_chunks_from_code_part(
code_file_part: CodePart,
max_tokens: int = 8192,
overlap: float = 0.25,
granularity: float = 0.1,
model_name: str = "text-embedding-3-large"
) -> Generator[SourceCodeChunk, None, None]:
"""Yields source code chunks from a CodePart object, with configurable token limits and overlap."""
if not code_file_part.source_code:
logger.error(f"No source code in CodeFile {code_file_part.id}")
return
tokenizer = tiktoken.encoding_for_model(model_name)
max_subchunk_tokens = max(1, int(granularity * max_tokens))
subchunk_token_counts = _get_subchunk_token_counts(tokenizer, code_file_part.source_code, max_subchunk_tokens)
previous_chunk = None
while subchunk_token_counts:
subchunk_token_counts, chunk_source_code = _get_chunk_source_code(subchunk_token_counts, overlap, max_tokens)
if not chunk_source_code:
continue
current_chunk = SourceCodeChunk(
id=uuid5(NAMESPACE_OID, chunk_source_code),
code_chunk_of=code_file_part,
source_code=chunk_source_code,
previous_chunk=previous_chunk
)
yield current_chunk
previous_chunk = current_chunk
async def get_source_code_chunks(data_points: list[DataPoint], embedding_model="text-embedding-3-large") -> \
AsyncGenerator[list[DataPoint], None]:
"""Processes code graph datapoints, create SourceCodeChink datapoints."""
# TODO: Add support for other embedding models, with max_token mapping
for data_point in data_points:
try:
yield data_point
if not isinstance(data_point, CodeFile):
continue
if not data_point.contains:
logger.warning(f"CodeFile {data_point.id} contains no code parts")
continue
for code_part in data_point.contains:
try:
yield code_part
for source_code_chunk in get_source_code_chunks_from_code_part(code_part, model_name=embedding_model):
yield source_code_chunk
except Exception as e:
logger.error(f"Error processing code part: {e}")
except Exception as e:
logger.error(f"Error processing data point: {e}")

View file

@ -1,6 +1,10 @@
import logging
from cognee.infrastructure.databases.exceptions.EmbeddingException import EmbeddingException
from cognee.infrastructure.databases.vector import get_vector_engine
from cognee.infrastructure.engine import DataPoint
logger = logging.getLogger("index_data_points")
async def index_data_points(data_points: list[DataPoint]):
created_indexes = {}
@ -30,7 +34,10 @@ async def index_data_points(data_points: list[DataPoint]):
for index_name, indexable_points in index_points.items():
index_name, field_name = index_name.split(".")
await vector_engine.index_data_points(index_name, field_name, indexable_points)
try:
await vector_engine.index_data_points(index_name, field_name, indexable_points)
except EmbeddingException as e:
logger.warning(f"Failed to index data points for {index_name}.{field_name}: {e}")
return data_points

View file

@ -1,6 +1,8 @@
from typing import Union
from cognee.infrastructure.engine import DataPoint
from cognee.modules.chunking.models import DocumentChunk
from cognee.shared.CodeGraphEntities import CodeFile
from cognee.shared.CodeGraphEntities import CodeFile, CodePart, SourceCodeChunk
class TextSummary(DataPoint):
@ -17,7 +19,7 @@ class TextSummary(DataPoint):
class CodeSummary(DataPoint):
__tablename__ = "code_summary"
text: str
made_from: CodeFile
summarizes: Union[CodeFile, CodePart, SourceCodeChunk]
_metadata: dict = {
"index_fields": ["text"],

View file

@ -1,10 +1,10 @@
import asyncio
from typing import AsyncGenerator, Union
from uuid import uuid5
from typing import Type
from cognee.infrastructure.engine import DataPoint
from cognee.modules.data.extraction.extract_summary import extract_code_summary
from .models import CodeSummary
@ -21,7 +21,7 @@ async def summarize_code(
)
file_summaries_map = {
code_data_point.extracted_id: str(file_summary)
code_data_point.id: str(file_summary)
for code_data_point, file_summary in zip(code_data_points, file_summaries)
}
@ -35,6 +35,6 @@ async def summarize_code(
yield CodeSummary(
id=uuid5(node.id, "CodeSummary"),
made_from=node,
text=file_summaries_map[node.extracted_id],
summarizes=node,
text=file_summaries_map[node.id],
)

View file

@ -11,6 +11,6 @@ async def main(repo_path, include_docs):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--repo_path", type=str, required=True, help="Path to the repository")
parser.add_argument("--include_docs", type=bool, default=True, help="Whether or not to process non-code files")
parser.add_argument("--include_docs", type=lambda x: x.lower() in ("true", "1"), default=True, help="Whether or not to process non-code files")
args = parser.parse_args()
asyncio.run(main(args.repo_path, args.include_docs))