refactor: improve methods order

This commit is contained in:
lxobr 2026-01-13 11:22:04 +01:00
parent 872795f0cc
commit c609b73cda

View file

@ -27,6 +27,39 @@ class NodeEdgeVectorSearch:
logger.error("Failed to initialize vector engine: %s", e)
raise RuntimeError("Initialization error") from e
async def embed_and_retrieve_distances(
self,
query: Optional[str] = None,
query_batch: Optional[List[str]] = None,
collections: List[str] = None,
wide_search_limit: Optional[int] = None,
):
"""Embeds query/queries and retrieves vector distances from all collections."""
if query is not None and query_batch is not None:
raise ValueError("Cannot provide both 'query' and 'query_batch'; use exactly one.")
if query is None and query_batch is None:
raise ValueError("Must provide either 'query' or 'query_batch'.")
if not collections:
raise ValueError("'collections' must be a non-empty list.")
start_time = time.time()
if query_batch is not None:
self.query_list_length = len(query_batch)
search_results = await self._run_batch_search(collections, query_batch)
else:
self.query_list_length = None
search_results = await self._run_single_search(collections, query, wide_search_limit)
elapsed_time = time.time() - start_time
collections_with_results = sum(1 for result in search_results if any(result))
logger.info(
f"Vector collection retrieval completed: Retrieved distances from "
f"{collections_with_results} collections in {elapsed_time:.2f}s"
)
self.set_distances_from_results(collections, search_results, self.query_list_length)
def has_results(self) -> bool:
"""Checks if any collections returned results."""
if self.query_list_length is None:
@ -43,6 +76,18 @@ class NodeEdgeVectorSearch:
for collection_results in self.node_distances.values()
)
def extract_relevant_node_ids(self) -> List[str]:
"""Extracts unique node IDs from search results."""
if self.query_list_length is not None:
return []
relevant_node_ids = set()
for scored_results in self.node_distances.values():
for scored_node in scored_results:
node_id = getattr(scored_node, "id", None)
if node_id:
relevant_node_ids.add(str(node_id))
return list(relevant_node_ids)
def set_distances_from_results(
self,
collections: List[str],
@ -74,23 +119,6 @@ class NodeEdgeVectorSearch:
else:
self.node_distances[collection] = result
def extract_relevant_node_ids(self) -> List[str]:
"""Extracts unique node IDs from search results."""
if self.query_list_length is not None:
return []
relevant_node_ids = set()
for scored_results in self.node_distances.values():
for scored_node in scored_results:
node_id = getattr(scored_node, "id", None)
if node_id:
relevant_node_ids.add(str(node_id))
return list(relevant_node_ids)
async def _embed_query(self, query: str):
"""Embeds the query and stores the resulting vector."""
query_embeddings = await self.vector_engine.embedding_engine.embed_text([query])
self.query_vector = query_embeddings[0]
async def _run_batch_search(
self, collections: List[str], query_batch: List[str]
) -> List[List[Any]]:
@ -127,38 +155,10 @@ class NodeEdgeVectorSearch:
search_results = await asyncio.gather(*search_tasks)
return search_results
async def embed_and_retrieve_distances(
self,
query: Optional[str] = None,
query_batch: Optional[List[str]] = None,
collections: List[str] = None,
wide_search_limit: Optional[int] = None,
):
"""Embeds query/queries and retrieves vector distances from all collections."""
if query is not None and query_batch is not None:
raise ValueError("Cannot provide both 'query' and 'query_batch'; use exactly one.")
if query is None and query_batch is None:
raise ValueError("Must provide either 'query' or 'query_batch'.")
if not collections:
raise ValueError("'collections' must be a non-empty list.")
start_time = time.time()
if query_batch is not None:
self.query_list_length = len(query_batch)
search_results = await self._run_batch_search(collections, query_batch)
else:
self.query_list_length = None
search_results = await self._run_single_search(collections, query, wide_search_limit)
elapsed_time = time.time() - start_time
collections_with_results = sum(1 for result in search_results if any(result))
logger.info(
f"Vector collection retrieval completed: Retrieved distances from "
f"{collections_with_results} collections in {elapsed_time:.2f}s"
)
self.set_distances_from_results(collections, search_results, self.query_list_length)
async def _embed_query(self, query: str):
"""Embeds the query and stores the resulting vector."""
query_embeddings = await self.vector_engine.embedding_engine.embed_text([query])
self.query_vector = query_embeddings[0]
async def _search_single_collection(
self, vector_engine: Any, wide_search_limit: Optional[int], collection_name: str