Mcp SSE support [COG-1781] (#785)

<!-- .github/pull_request_template.md -->

## Description
Add both sse and stdio support for Cognee MCP

## DCO Affirmation
I affirm that all code in every commit of this pull request conforms to
the terms of the Topoteretes Developer Certificate of Origin.
This commit is contained in:
Igor Ilic 2025-04-28 16:02:38 +02:00 committed by GitHub
parent a627841e72
commit c4915a4136
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 2616 additions and 2707 deletions

View file

@ -7,6 +7,7 @@ requires-python = ">=3.10"
dependencies = [
"cognee[postgres,codegraph,gemini,huggingface]==0.1.39",
"fastmcp>=1.0",
"mcp==1.5.0",
"uv>=0.6.3",
]

View file

@ -1,253 +1,141 @@
import asyncio
import json
import os
import sys
import argparse
import cognee
import asyncio
from cognee.shared.logging_utils import get_logger, get_log_file_location
import importlib.util
from contextlib import redirect_stdout
# from PIL import Image as PILImage
import mcp.types as types
from mcp.server import Server, NotificationOptions
from mcp.server.models import InitializationOptions
from mcp.server import FastMCP
from cognee.api.v1.cognify.code_graph_pipeline import run_code_graph_pipeline
from cognee.modules.search.types import SearchType
from cognee.shared.data_models import KnowledgeGraph
from cognee.modules.storage.utils import JSONEncoder
mcp = Server("cognee")
mcp = FastMCP("Cognee")
logger = get_logger()
log_file = get_log_file_location()
@mcp.list_tools()
async def list_tools() -> list[types.Tool]:
@mcp.tool()
async def cognify(text: str, graph_model_file: str = None, graph_model_name: str = None) -> list:
async def cognify_task(
text: str, graph_model_file: str = None, graph_model_name: str = None
) -> str:
"""Build knowledge graph from the input text"""
# NOTE: MCP uses stdout to communicate, we must redirect all output
# going to stdout ( like the print function ) to stderr.
# As cognify is an async background job the output had to be redirected again.
with redirect_stdout(sys.stderr):
logger.info("Cognify process starting.")
if graph_model_file and graph_model_name:
graph_model = load_class(graph_model_file, graph_model_name)
else:
graph_model = KnowledgeGraph
await cognee.add(text)
try:
await cognee.cognify(graph_model=graph_model)
logger.info("Cognify process finished.")
except Exception as e:
logger.error("Cognify process failed.")
raise ValueError(f"Failed to cognify: {str(e)}")
asyncio.create_task(
cognify_task(
text=text,
graph_model_file=graph_model_file,
graph_model_name=graph_model_name,
)
)
text = (
f"Background process launched due to MCP timeout limitations.\n"
f"Average completion time is around 4 minutes.\n"
f"For current cognify status you can check the log file at: {log_file}"
)
return [
types.Tool(
name="cognify",
description="Cognifies text into knowledge graph",
inputSchema={
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "The text to cognify",
},
"graph_model_file": {
"type": "string",
"description": "The path to the graph model file (Optional)",
},
"graph_model_name": {
"type": "string",
"description": "The name of the graph model (Optional)",
},
},
"required": ["text"],
},
),
types.Tool(
name="codify",
description="Transforms codebase into knowledge graph",
inputSchema={
"type": "object",
"properties": {
"repo_path": {
"type": "string",
},
},
"required": ["repo_path"],
},
),
types.Tool(
name="search",
description="Searches for information in knowledge graph",
inputSchema={
"type": "object",
"properties": {
"search_query": {
"type": "string",
"description": "The query to search for",
},
"search_type": {
"type": "string",
"description": "The type of search to perform (e.g., INSIGHTS, CODE)",
},
},
"required": ["search_query"],
},
),
types.Tool(
name="prune",
description="Prunes knowledge graph",
inputSchema={
"type": "object",
"properties": {},
},
),
types.TextContent(
type="text",
text=text,
)
]
@mcp.call_tool()
async def call_tools(name: str, arguments: dict) -> list[types.TextContent]:
try:
@mcp.tool()
async def codify(repo_path: str) -> list:
async def codify_task(repo_path: str):
# NOTE: MCP uses stdout to communicate, we must redirect all output
# going to stdout ( like the print function ) to stderr.
# As codify is an async background job the output had to be redirected again.
with redirect_stdout(sys.stderr):
logger.info("Codify process starting.")
results = []
async for result in run_code_graph_pipeline(repo_path, False):
results.append(result)
logger.info(result)
if all(results):
logger.info("Codify process finished succesfully.")
else:
logger.info("Codify process failed.")
asyncio.create_task(codify_task(repo_path))
text = (
f"Background process launched due to MCP timeout limitations.\n"
f"Average completion time is around 4 minutes.\n"
f"For current codify status you can check the log file at: {log_file}"
)
return [
types.TextContent(
type="text",
text=text,
)
]
@mcp.tool()
async def search(search_query: str, search_type: str) -> list:
async def search_task(search_query: str, search_type: str) -> str:
"""Search the knowledge graph"""
# NOTE: MCP uses stdout to communicate, we must redirect all output
# going to stdout ( like the print function ) to stderr.
with redirect_stdout(sys.stderr):
log_file = get_log_file_location()
if name == "cognify":
asyncio.create_task(
cognify(
text=arguments["text"],
graph_model_file=arguments.get("graph_model_file"),
graph_model_name=arguments.get("graph_model_name"),
)
)
text = (
f"Background process launched due to MCP timeout limitations.\n"
f"Average completion time is around 4 minutes.\n"
f"For current cognify status you can check the log file at: {log_file}"
)
return [
types.TextContent(
type="text",
text=text,
)
]
if name == "codify":
asyncio.create_task(codify(arguments.get("repo_path")))
text = (
f"Background process launched due to MCP timeout limitations.\n"
f"Average completion time is around 4 minutes.\n"
f"For current codify status you can check the log file at: {log_file}"
)
return [
types.TextContent(
type="text",
text=text,
)
]
elif name == "search":
search_results = await search(arguments["search_query"], arguments["search_type"])
return [types.TextContent(type="text", text=search_results)]
elif name == "prune":
await prune()
return [types.TextContent(type="text", text="Pruned")]
except Exception as e:
logger.error(f"Error calling tool '{name}': {str(e)}")
return [types.TextContent(type="text", text=f"Error calling tool '{name}': {str(e)}")]
async def cognify(text: str, graph_model_file: str = None, graph_model_name: str = None) -> str:
"""Build knowledge graph from the input text"""
# NOTE: MCP uses stdout to communicate, we must redirect all output
# going to stdout ( like the print function ) to stderr.
# As cognify is an async background job the output had to be redirected again.
with redirect_stdout(sys.stderr):
logger.info("Cognify process starting.")
if graph_model_file and graph_model_name:
graph_model = load_class(graph_model_file, graph_model_name)
else:
graph_model = KnowledgeGraph
await cognee.add(text)
try:
await cognee.cognify(graph_model=graph_model)
logger.info("Cognify process finished.")
except Exception as e:
logger.error("Cognify process failed.")
raise ValueError(f"Failed to cognify: {str(e)}")
async def codify(repo_path: str):
# NOTE: MCP uses stdout to communicate, we must redirect all output
# going to stdout ( like the print function ) to stderr.
# As codify is an async background job the output had to be redirected again.
with redirect_stdout(sys.stderr):
logger.info("Codify process starting.")
results = []
async for result in run_code_graph_pipeline(repo_path, False):
results.append(result)
logger.info(result)
if all(results):
logger.info("Codify process finished succesfully.")
else:
logger.info("Codify process failed.")
async def search(search_query: str, search_type: str) -> str:
"""Search the knowledge graph"""
# NOTE: MCP uses stdout to communicate, we must redirect all output
# going to stdout ( like the print function ) to stderr.
with redirect_stdout(sys.stderr):
search_results = await cognee.search(
query_type=SearchType[search_type.upper()], query_text=search_query
)
if search_type.upper() == "CODE":
return json.dumps(search_results, cls=JSONEncoder)
elif search_type.upper() == "GRAPH_COMPLETION" or search_type.upper() == "RAG_COMPLETION":
return search_results[0]
elif search_type.upper() == "CHUNKS":
return str(search_results)
elif search_type.upper() == "INSIGHTS":
results = retrieved_edges_to_string(search_results)
return results
else:
return str(search_results)
async def prune():
"""Reset the knowledge graph"""
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
async def main():
try:
from mcp.server.stdio import stdio_server
logger.info("Cognee MCP server started...")
async with stdio_server() as (read_stream, write_stream):
await mcp.run(
read_stream=read_stream,
write_stream=write_stream,
initialization_options=InitializationOptions(
server_name="cognee",
server_version="0.1.0",
capabilities=mcp.get_capabilities(
notification_options=NotificationOptions(),
experimental_capabilities={},
),
),
raise_exceptions=True,
search_results = await cognee.search(
query_type=SearchType[search_type.upper()], query_text=search_query
)
logger.info("Cognee MCP server closed.")
if search_type.upper() == "CODE":
return json.dumps(search_results, cls=JSONEncoder)
elif (
search_type.upper() == "GRAPH_COMPLETION" or search_type.upper() == "RAG_COMPLETION"
):
return search_results[0]
elif search_type.upper() == "CHUNKS":
return str(search_results)
elif search_type.upper() == "INSIGHTS":
results = retrieved_edges_to_string(search_results)
return results
else:
return str(search_results)
except Exception as e:
logger.error(f"Server failed to start: {str(e)}", exc_info=True)
raise
search_results = await search_task(search_query, search_type)
return [types.TextContent(type="text", text=search_results)]
# async def visualize() -> Image:
# """Visualize the knowledge graph"""
# try:
# image_path = await cognee.visualize_graph()
# img = PILImage.open(image_path)
# return Image(data=img.tobytes(), format="png")
# except (FileNotFoundError, IOError, ValueError) as e:
# raise ValueError(f"Failed to create visualization: {str(e)}")
@mcp.tool()
async def prune():
"""Reset the knowledge graph"""
with redirect_stdout(sys.stderr):
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
return [types.TextContent(type="text", text="Pruned")]
def node_to_string(node):
@ -265,6 +153,7 @@ def retrieved_edges_to_string(search_results):
relationship_type = edge["relationship_name"]
edge_str = f"{node_to_string(node1)} {relationship_type} {node_to_string(node2)}"
edge_strings.append(edge_str)
return "\n".join(edge_strings)
@ -279,32 +168,31 @@ def load_class(model_file, model_name):
return model_class
# def get_freshest_png(directory: str) -> Image:
# if not os.path.exists(directory):
# raise FileNotFoundError(f"Directory {directory} does not exist")
async def main():
parser = argparse.ArgumentParser()
# # List all files in 'directory' that end with .png
# files = [f for f in os.listdir(directory) if f.endswith(".png")]
# if not files:
# raise FileNotFoundError("No PNG files found in the given directory.")
parser.add_argument(
"--transport",
choices=["sse", "stdio"],
default="stdio",
help="Transport to use for communication with the client. (default: stdio)",
)
# # Sort by integer value of the filename (minus the '.png')
# # Example filename: 1673185134.png -> integer 1673185134
# try:
# files_sorted = sorted(files, key=lambda x: int(x.replace(".png", "")))
# except ValueError as e:
# raise ValueError("Invalid PNG filename format. Expected timestamp format.") from e
args = parser.parse_args()
# # The "freshest" file has the largest timestamp
# freshest_filename = files_sorted[-1]
# freshest_path = os.path.join(directory, freshest_filename)
logger.info(f"Starting MCP server with transport: {args.transport}")
if args.transport == "stdio":
await mcp.run_stdio_async()
elif args.transport == "sse":
logger.info(
f"Running MCP server with SSE transport on {mcp.settings.host}:{mcp.settings.port}"
)
await mcp.run_sse_async()
# # Open the image with PIL and return the PIL Image object
# try:
# return PILImage.open(freshest_path)
# except (IOError, OSError) as e:
# raise IOError(f"Failed to open PNG file {freshest_path}") from e
if __name__ == "__main__":
# Initialize and run the server
asyncio.run(main())
try:
asyncio.run(main())
except Exception as e:
logger.error(f"Error initializing Cognee MCP server: {str(e)}")
raise

4946
cognee-mcp/uv.lock generated

File diff suppressed because it is too large Load diff