Merge branch 'dev' into ffix_sec

This commit is contained in:
Vasilije 2026-01-08 21:29:02 +01:00 committed by GitHub
commit c3c8961631
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
94 changed files with 257 additions and 269 deletions

View file

@ -3,7 +3,7 @@
language: en
early_access: false
enable_free_tier: true
reviews:
reviews:
profile: chill
instructions: >-
# Code Review Instructions
@ -118,10 +118,10 @@ reviews:
- E117
- D208
line_length: 100
dummy_variable_rgx: '^(_.*|junk|extra)$' # Variables starting with '_' or named 'junk' or 'extras', are considered dummy variables
dummy_variable_rgx: '^(_.*|junk|extra)$' # Variables starting with '_' or named 'junk' or 'extras', are considered dummy variables
markdownlint:
enabled: true
yamllint:
enabled: true
chat:
auto_reply: true
auto_reply: true

View file

@ -2,4 +2,8 @@
# Example:
# CORS_ALLOWED_ORIGINS="https://yourdomain.com,https://another.com"
# For local development, you might use:
# CORS_ALLOWED_ORIGINS="http://localhost:3000"
# CORS_ALLOWED_ORIGINS="http://localhost:3000"
LLM_API_KEY="your-openai-api-key"
LLM_MODEL="openai/gpt-4o-mini"
LLM_PROVIDER="openai"

View file

@ -28,4 +28,4 @@ secret-scan:
- path: 'docker-compose.yml'
comment: 'Development docker compose with test credentials (neo4j/pleaseletmein, postgres cognee/cognee)'
- path: 'deployment/helm/docker-compose-helm.yml'
comment: 'Helm deployment docker compose with test postgres credentials (cognee/cognee)'
comment: 'Helm deployment docker compose with test postgres credentials (cognee/cognee)'

View file

@ -8,7 +8,7 @@ body:
attributes:
value: |
Thanks for taking the time to fill out this bug report! Please provide a clear and detailed description.
- type: textarea
id: description
attributes:
@ -17,7 +17,7 @@ body:
placeholder: Describe the bug in detail...
validations:
required: true
- type: textarea
id: reproduction
attributes:
@ -29,7 +29,7 @@ body:
3. See error...
validations:
required: true
- type: textarea
id: expected
attributes:
@ -38,7 +38,7 @@ body:
placeholder: Describe what you expected...
validations:
required: true
- type: textarea
id: actual
attributes:
@ -47,7 +47,7 @@ body:
placeholder: Describe what actually happened...
validations:
required: true
- type: textarea
id: environment
attributes:
@ -61,7 +61,7 @@ body:
- Database: [e.g. Neo4j]
validations:
required: true
- type: textarea
id: logs
attributes:
@ -71,7 +71,7 @@ body:
render: shell
validations:
required: false
- type: textarea
id: additional
attributes:
@ -80,7 +80,7 @@ body:
placeholder: Any additional information...
validations:
required: false
- type: checkboxes
id: checklist
attributes:

View file

@ -8,7 +8,7 @@ body:
attributes:
value: |
Thanks for helping improve our documentation! Please provide details about the documentation issue or improvement.
- type: dropdown
id: doc-type
attributes:
@ -22,7 +22,7 @@ body:
- New documentation request
validations:
required: true
- type: textarea
id: location
attributes:
@ -31,7 +31,7 @@ body:
placeholder: https://cognee.ai/docs/... or specific file/section
validations:
required: true
- type: textarea
id: issue
attributes:
@ -40,7 +40,7 @@ body:
placeholder: The documentation is unclear about...
validations:
required: true
- type: textarea
id: suggestion
attributes:
@ -49,7 +49,7 @@ body:
placeholder: I suggest changing this to...
validations:
required: false
- type: textarea
id: additional
attributes:
@ -58,7 +58,7 @@ body:
placeholder: Additional context...
validations:
required: false
- type: checkboxes
id: checklist
attributes:
@ -71,4 +71,3 @@ body:
required: true
- label: I have specified the location of the documentation issue
required: true

View file

@ -8,7 +8,7 @@ body:
attributes:
value: |
Thanks for suggesting a new feature! Please provide a clear and detailed description of your idea.
- type: textarea
id: problem
attributes:
@ -17,7 +17,7 @@ body:
placeholder: I'm always frustrated when...
validations:
required: true
- type: textarea
id: solution
attributes:
@ -26,7 +26,7 @@ body:
placeholder: I would like to see...
validations:
required: true
- type: textarea
id: alternatives
attributes:
@ -35,7 +35,7 @@ body:
placeholder: I have also considered...
validations:
required: false
- type: textarea
id: use-case
attributes:
@ -44,7 +44,7 @@ body:
placeholder: This feature would help me...
validations:
required: true
- type: textarea
id: implementation
attributes:
@ -53,7 +53,7 @@ body:
placeholder: This could be implemented by...
validations:
required: false
- type: textarea
id: additional
attributes:
@ -62,7 +62,7 @@ body:
placeholder: Additional context...
validations:
required: false
- type: checkboxes
id: checklist
attributes:
@ -75,4 +75,3 @@ body:
required: true
- label: I have described my specific use case
required: true

View file

@ -34,14 +34,14 @@ runs:
-e NEO4J_apoc_export_file_enabled=true \
-e NEO4J_apoc_import_file_enabled=true \
neo4j:${{ inputs.neo4j-version }}
- name: Wait for Neo4j to be ready
shell: bash
run: |
echo "Waiting for Neo4j to start..."
timeout=60
counter=0
while [ $counter -lt $timeout ]; do
if docker exec neo4j-test cypher-shell -u neo4j -p "${{ inputs.neo4j-password }}" "RETURN 1" > /dev/null 2>&1; then
echo "Neo4j is ready!"
@ -51,13 +51,13 @@ runs:
sleep 2
counter=$((counter + 2))
done
if [ $counter -ge $timeout ]; then
echo "Neo4j failed to start within $timeout seconds"
docker logs neo4j-test
exit 1
fi
- name: Verify GDS is available
shell: bash
run: |

View file

@ -8,5 +8,3 @@ lxobr
pazone
siillee
vasilije1990

View file

@ -10,26 +10,21 @@ DO NOT use AI-generated descriptions. We want to understand your thought process
<!--
* Key requirements to the new feature or modification;
* Proof that the changes work and meet the requirements;
* Include instructions on how to verify the changes. Describe how to test it locally;
* Proof that it's sufficiently tested.
-->
## Type of Change
<!-- Please check the relevant option -->
- [ ] Bug fix (non-breaking change that fixes an issue)
- [ ] New feature (non-breaking change that adds functionality)
- [ ] Breaking change (fix or feature that would cause existing functionality to change)
- [ ] Documentation update
- [ ] Code refactoring
- [ ] Performance improvement
- [ ] Other (please specify):
## Screenshots/Videos (if applicable)
<!-- Add screenshots or videos to help explain your changes -->
## Screenshots
<!-- ADD SCREENSHOT OF LOCAL TESTS PASSING-->
## Pre-submission Checklist
<!-- Please check all boxes that apply before submitting your PR -->
- [ ] **I have tested my changes thoroughly before submitting this PR**
- [ ] **I have tested my changes thoroughly before submitting this PR** (See `CONTRIBUTING.md`)
- [ ] **This PR contains minimal changes necessary to address the issue/feature**
- [ ] My code follows the project's coding standards and style guidelines
- [ ] I have added tests that prove my fix is effective or that my feature works

View file

@ -3,7 +3,7 @@ tag-template: 'v$NEXT_PATCH_VERSION'
categories:
- title: 'Features'
labels: ['feature', 'enhancement']
labels: ['feature', 'enhancement']
- title: 'Bug Fixes'
labels: ['bug', 'fix']
- title: 'Maintenance'

View file

@ -31,54 +31,54 @@ WORKFLOWS=(
for workflow in "${WORKFLOWS[@]}"; do
if [ -f "$workflow" ]; then
echo "Processing $workflow..."
# Create a backup
cp "$workflow" "${workflow}.bak"
# Check if the file begins with a workflow_call trigger
if grep -q "workflow_call:" "$workflow"; then
echo "$workflow already has workflow_call trigger, skipping..."
continue
fi
# Get the content after the 'on:' section
on_line=$(grep -n "^on:" "$workflow" | cut -d ':' -f1)
if [ -z "$on_line" ]; then
echo "Warning: No 'on:' section found in $workflow, skipping..."
continue
fi
# Create a new file with the modified content
{
# Copy the part before 'on:'
head -n $((on_line-1)) "$workflow"
# Add the new on: section that only includes workflow_call
echo "on:"
echo " workflow_call:"
echo " secrets:"
echo " inherit: true"
# Find where to continue after the original 'on:' section
next_section=$(awk "NR > $on_line && /^[a-z]/ {print NR; exit}" "$workflow")
if [ -z "$next_section" ]; then
next_section=$(wc -l < "$workflow")
next_section=$((next_section+1))
fi
# Copy the rest of the file starting from the next section
tail -n +$next_section "$workflow"
} > "${workflow}.new"
# Replace the original with the new version
mv "${workflow}.new" "$workflow"
echo "Modified $workflow to only run when called from test-suites.yml"
else
echo "Warning: $workflow not found, skipping..."
fi
done
echo "Finished modifying workflows!"
echo "Finished modifying workflows!"

View file

@ -45,4 +45,4 @@ jobs:
cache-to: type=registry,ref=cognee/cognee:buildcache,mode=max
- name: Image digest
run: echo ${{ steps.build.outputs.digest }}
run: echo ${{ steps.build.outputs.digest }}

View file

@ -72,5 +72,3 @@ jobs:
} catch (error) {
core.warning(`Failed to add label: ${error.message}`);
}

View file

@ -66,5 +66,3 @@ jobs:
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_S3_DEV_USER_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_S3_DEV_USER_SECRET_KEY }}
run: uv run python ./cognee/tests/test_load.py

View file

@ -5,7 +5,7 @@ permissions:
contents: read
jobs:
check-uv-lock:
name: Validate uv lockfile and project metadata
name: Lockfile and Pre-commit Hooks
runs-on: ubuntu-22.04
steps:
- name: Check out repository
@ -17,6 +17,9 @@ jobs:
uses: astral-sh/setup-uv@v4
with:
enable-cache: true
- name: Validate uv lockfile and project metadata
run: uv lock --check || { echo "'uv lock --check' failed."; echo "Run 'uv lock' and push your changes."; exit 1; }
- name: Run pre-commit hooks
uses: pre-commit/action@v3.0.1

View file

@ -42,10 +42,10 @@ jobs:
echo "tag=${TAG}" >> "$GITHUB_OUTPUT"
echo "version=${VERSION}" >> "$GITHUB_OUTPUT"
git tag "${TAG}"
git push origin "${TAG}"
- name: Create GitHub Release
uses: softprops/action-gh-release@v2
@ -54,8 +54,8 @@ jobs:
generate_release_notes: true
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
release-pypi-package:
release-pypi-package:
needs: release-github
name: Release PyPI Package from ${{ inputs.flavour }}
permissions:
@ -67,25 +67,25 @@ jobs:
uses: actions/checkout@v4
with:
ref: ${{ inputs.flavour }}
- name: Install uv
uses: astral-sh/setup-uv@v7
- name: Install Python
run: uv python install
- name: Install dependencies
run: uv sync --locked --all-extras
- name: Build distributions
run: uv build
- name: Publish ${{ inputs.flavour }} release to PyPI
env:
UV_PUBLISH_TOKEN: ${{ secrets.PYPI_TOKEN }}
run: uv publish
release-docker-image:
release-docker-image:
needs: release-github
name: Release Docker Image from ${{ inputs.flavour }}
permissions:
@ -128,7 +128,7 @@ jobs:
context: .
platforms: linux/amd64,linux/arm64
push: true
tags: |
tags: |
cognee/cognee:${{ needs.release-github.outputs.version }}
cognee/cognee:latest
labels: |
@ -163,4 +163,4 @@ jobs:
-H "Authorization: Bearer ${{ secrets.REPO_DISPATCH_PAT_TOKEN }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/repos/topoteretes/cognee-community/dispatches \
-d '{"event_type":"new-main-release","client_payload":{"caller_repo":"'"${GITHUB_REPOSITORY}"'"}}'
-d '{"event_type":"new-main-release","client_payload":{"caller_repo":"'"${GITHUB_REPOSITORY}"'"}}'

View file

@ -15,4 +15,3 @@ jobs:
name: Load Tests
uses: ./.github/workflows/load_tests.yml
secrets: inherit

View file

@ -10,7 +10,7 @@ on:
required: false
type: string
default: '["3.10.x", "3.12.x", "3.13.x"]'
os:
os:
required: false
type: string
default: '["ubuntu-22.04", "macos-15", "windows-latest"]'

View file

@ -173,4 +173,4 @@ jobs:
EMBEDDING_MODEL: "amazon.titan-embed-text-v2:0"
EMBEDDING_DIMENSIONS: "1024"
EMBEDDING_MAX_TOKENS: "8191"
run: uv run python ./examples/python/simple_example.py
run: uv run python ./examples/python/simple_example.py

View file

@ -18,11 +18,11 @@ env:
RUNTIME__LOG_LEVEL: ERROR
ENV: 'dev'
jobs:
jobs:
pre-test:
name: basic checks
uses: ./.github/workflows/pre_test.yml
basic-tests:
name: Basic Tests
uses: ./.github/workflows/basic_tests.yml

1
.gitignore vendored
View file

@ -147,6 +147,7 @@ venv/
ENV/
env.bak/
venv.bak/
mise.toml
# Spyder project settings
.spyderproject

View file

@ -6,4 +6,4 @@ pull_request_rules:
actions:
backport:
branches:
- main
- main

View file

@ -7,6 +7,7 @@ repos:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
exclude: ^deployment/helm/templates/
- id: check-added-large-files
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.

View file

@ -128,5 +128,3 @@ MCP server and Frontend:
## CI Mirrors Local Commands
Our GitHub Actions run the same ruff checks and pytest suites shown above (`.github/workflows/basic_tests.yml` and related workflows). Use the commands in this document locally to minimize CI surprises.

View file

@ -1,16 +1,16 @@
> [!IMPORTANT]
> **Note for contributors:** When branching out, create a new branch from the `dev` branch.
# 🎉 Welcome to **cognee**!
# 🎉 Welcome to **cognee**!
We're excited that you're interested in contributing to our project!
We want to ensure that every user and contributor feels welcome, included and supported to participate in cognee community.
We're excited that you're interested in contributing to our project!
We want to ensure that every user and contributor feels welcome, included and supported to participate in cognee community.
This guide will help you get started and ensure your contributions can be efficiently integrated into the project.
## 🌟 Quick Links
- [Code of Conduct](CODE_OF_CONDUCT.md)
- [Discord Community](https://discord.gg/bcy8xFAtfd)
- [Discord Community](https://discord.gg/bcy8xFAtfd)
- [Issue Tracker](https://github.com/topoteretes/cognee/issues)
- [Cognee Docs](https://docs.cognee.ai)
@ -62,6 +62,11 @@ Looking for a place to start? Try filtering for [good first issues](https://gith
## 2. 🛠️ Development Setup
### Required tools
* [Python](https://www.python.org/downloads/)
* [uv](https://docs.astral.sh/uv/getting-started/installation/)
* pre-commit: `uv run pip install pre-commit && pre-commit install`
### Fork and Clone
1. Fork the [**cognee**](https://github.com/topoteretes/cognee) repository
@ -93,29 +98,31 @@ git checkout -b feature/your-feature-name
4. **Commits**: Write clear commit messages
### Running Tests
Rename `.env.example` into `.env` and provide your OPENAI_API_KEY as LLM_API_KEY
```shell
python cognee/cognee/tests/test_library.py
uv run python cognee/tests/test_library.py
```
### Running Simple Example
Change .env.example into .env and provide your OPENAI_API_KEY as LLM_API_KEY
Rename `.env.example` into `.env` and provide your OPENAI_API_KEY as LLM_API_KEY
Make sure to run ```shell uv sync ``` in the root cloned folder or set up a virtual environment to run cognee
```shell
python cognee/cognee/examples/python/simple_example.py
python examples/python/simple_example.py
```
or
or
```shell
uv run python cognee/cognee/examples/python/simple_example.py
uv run python examples/python/simple_example.py
```
## 4. 📤 Submitting Changes
1. Install ruff on your system
2. Run ```ruff format .``` and ``` ruff check ``` and fix the issues
1. Make sure that `pre-commit` and hooks are installed. See `Required tools` section for more information. Try executing `pre-commit run` if you are not sure.
3. Push your changes:
```shell
git add .

View file

@ -65,12 +65,12 @@ Use your data to build personalized and dynamic memory for AI Agents. Cognee let
## About Cognee
Cognee is an open-source tool and platform that transforms your raw data into persistent and dynamic AI memory for Agents. It combines vector search with graph databases to make your documents both searchable by meaning and connected by relationships.
Cognee is an open-source tool and platform that transforms your raw data into persistent and dynamic AI memory for Agents. It combines vector search with graph databases to make your documents both searchable by meaning and connected by relationships.
You can use Cognee in two ways:
1. [Self-host Cognee Open Source](https://docs.cognee.ai/getting-started/installation), which stores all data locally by default.
2. [Connect to Cognee Cloud](https://platform.cognee.ai/), and get the same OSS stack on managed infrastructure for easier development and productionization.
2. [Connect to Cognee Cloud](https://platform.cognee.ai/), and get the same OSS stack on managed infrastructure for easier development and productionization.
### Cognee Open Source (self-hosted):
@ -81,8 +81,8 @@ You can use Cognee in two ways:
- Offers high customizability through user-defined tasks, modular pipelines, and built-in search endpoints
### Cognee Cloud (managed):
- Hosted web UI dashboard
- Automatic version updates
- Hosted web UI dashboard
- Automatic version updates
- Resource usage analytics
- GDPR compliant, enterprise-grade security
@ -119,7 +119,7 @@ To integrate other LLM providers, see our [LLM Provider Documentation](https://d
### Step 3: Run the Pipeline
Cognee will take your documents, generate a knowledge graph from them and then query the graph based on combined relationships.
Cognee will take your documents, generate a knowledge graph from them and then query the graph based on combined relationships.
Now, run a minimal pipeline:
@ -157,7 +157,7 @@ As you can see, the output is generated from the document we previously stored i
Cognee turns documents into AI memory.
```
### Use the Cognee CLI
### Use the Cognee CLI
As an alternative, you can get started with these essential commands:

View file

@ -1 +1 @@
Generic single-database configuration with an async dbapi.
Generic single-database configuration with an async dbapi.

View file

@ -43,10 +43,10 @@ Saiba mais sobre os [casos de uso](https://docs.cognee.ai/use-cases) e [avaliaç
## Funcionalidades
- Conecte e recupere suas conversas passadas, documentos, imagens e transcrições de áudio
- Reduza alucinações, esforço de desenvolvimento e custos
- Carregue dados em bancos de dados de grafos e vetores usando apenas Pydantic
- Transforme e organize seus dados enquanto os coleta de mais de 30 fontes diferentes
- Conecte e recupere suas conversas passadas, documentos, imagens e transcrições de áudio
- Reduza alucinações, esforço de desenvolvimento e custos
- Carregue dados em bancos de dados de grafos e vetores usando apenas Pydantic
- Transforme e organize seus dados enquanto os coleta de mais de 30 fontes diferentes
## Primeiros Passos
@ -108,7 +108,7 @@ if __name__ == '__main__':
Exemplo do output:
```
O Processamento de Linguagem Natural (NLP) é um campo interdisciplinar e transdisciplinar que envolve ciência da computação e recuperação de informações. Ele se concentra na interação entre computadores e a linguagem humana, permitindo que as máquinas compreendam e processem a linguagem natural.
```
Visualização do grafo:

View file

@ -141,7 +141,7 @@ if __name__ == '__main__':
2. Простая демонстрация GraphRAG
[Видео](https://github.com/user-attachments/assets/d80b0776-4eb9-4b8e-aa22-3691e2d44b8f)
3. Cognee с Ollama
3. Cognee с Ollama
[Видео](https://github.com/user-attachments/assets/8621d3e8-ecb8-4860-afb2-5594f2ee17db)
## Правила поведения

View file

@ -114,7 +114,7 @@ if __name__ == '__main__':
示例输出:
```
自然语言处理NLP是计算机科学和信息检索的跨学科领域。它关注计算机和人类语言之间的交互使机器能够理解和处理自然语言。
```
图形可视化:
<a href="https://rawcdn.githack.com/topoteretes/cognee/refs/heads/main/assets/graph_visualization.html"><img src="https://rawcdn.githack.com/topoteretes/cognee/refs/heads/main/assets/graph_visualization.png" width="100%" alt="图形可视化"></a>

View file

@ -34,4 +34,4 @@
"tailwindcss": "^4.1.7",
"typescript": "^5"
}
}
}

View file

@ -55,7 +55,7 @@ export default function CogneeAddWidget({ onData, useCloud = false }: CogneeAddW
setTrue: setProcessingFilesInProgress,
setFalse: setProcessingFilesDone,
} = useBoolean(false);
const handleAddFiles = (dataset: Dataset, event: ChangeEvent<HTMLInputElement>) => {
event.stopPropagation();

View file

@ -111,7 +111,7 @@ export default function GraphControls({ data, isAddNodeFormOpen, onGraphShapeCha
const [isAuthShapeChangeEnabled, setIsAuthShapeChangeEnabled] = useState(true);
const shapeChangeTimeout = useRef<number | null>(null);
useEffect(() => {
onGraphShapeChange(DEFAULT_GRAPH_SHAPE);

View file

@ -57,7 +57,7 @@ export default function GraphVisualization({ ref, data, graphControls, className
// Initial size calculation
handleResize();
// ResizeObserver
// ResizeObserver
const resizeObserver = new ResizeObserver(() => {
handleResize();
});
@ -216,7 +216,7 @@ export default function GraphVisualization({ ref, data, graphControls, className
}, [data, graphRef]);
const [graphShape, setGraphShape] = useState<string>();
const zoomToFit: ForceGraphMethods["zoomToFit"] = (
durationMs?: number,
padding?: number,
@ -227,15 +227,15 @@ export default function GraphVisualization({ ref, data, graphControls, className
// eslint-disable-next-line @typescript-eslint/no-explicit-any
return undefined as any;
}
return graphRef.current.zoomToFit?.(durationMs, padding, nodeFilter);
};
useImperativeHandle(ref, () => ({
zoomToFit,
setGraphShape,
}));
return (
<div ref={containerRef} className={classNames("w-full h-full", className)} id="graph-container">

View file

@ -1373,4 +1373,4 @@
"padding": 20
}
}
}
}

View file

@ -134,7 +134,7 @@ export default function DatasetsAccordion({
} = useBoolean(false);
const [datasetToRemove, setDatasetToRemove] = useState<Dataset | null>(null);
const handleDatasetRemove = (dataset: Dataset) => {
setDatasetToRemove(dataset);
openRemoveDatasetModal();

View file

@ -45,7 +45,7 @@ export default function Plan() {
<div className="bg-white rounded-xl px-5 py-5 mb-2">
Affordable and transparent pricing
</div>
<div className="grid grid-cols-3 gap-x-2.5">
<div className="pt-13 py-4 px-5 mb-2.5 rounded-tl-xl rounded-tr-xl bg-white h-full">
<div>Basic</div>

View file

@ -40,7 +40,7 @@ export default function useChat(dataset: Dataset) {
setTrue: disableSearchRun,
setFalse: enableSearchRun,
} = useBoolean(false);
const refreshChat = useCallback(async () => {
const data = await fetchMessages();
return setMessages(data);

View file

@ -46,7 +46,7 @@ function useDatasets(useCloud = false) {
// checkDatasetStatuses(datasets);
// }, 50000);
// }, [fetchDatasetStatuses]);
// useEffect(() => {
// return () => {
// if (statusTimeout.current !== null) {

View file

@ -7,7 +7,7 @@ export default function createNotebook(notebookName: string, instance: CogneeIns
headers: {
"Content-Type": "application/json",
},
}).then((response: Response) =>
}).then((response: Response) =>
response.ok ? response.json() : Promise.reject(response)
);
}

View file

@ -6,7 +6,7 @@ export default function getNotebooks(instance: CogneeInstance) {
headers: {
"Content-Type": "application/json",
},
}).then((response: Response) =>
}).then((response: Response) =>
response.ok ? response.json() : Promise.reject(response)
);
}

View file

@ -7,7 +7,7 @@ export default function saveNotebook(notebookId: string, notebookData: object, i
headers: {
"Content-Type": "application/json",
},
}).then((response: Response) =>
}).then((response: Response) =>
response.ok ? response.json() : Promise.reject(response)
);
}

View file

@ -7,4 +7,4 @@ export default function GitHubIcon({ width = 24, height = 24, color = 'currentCo
</g>
</svg>
);
}
}

View file

@ -46,7 +46,7 @@ export default function Header({ user }: HeaderProps) {
checkMCPConnection();
const interval = setInterval(checkMCPConnection, 30000);
return () => clearInterval(interval);
}, [setMCPConnected, setMCPDisconnected]);

View file

@ -90,7 +90,7 @@ export default function SearchView() {
scrollToBottom();
setSearchInputValue("");
// Pass topK to sendMessage
sendMessage(chatInput, searchType, topK)
.then(scrollToBottom)
@ -171,4 +171,4 @@ export default function SearchView() {
</form>
</div>
);
}
}

View file

@ -1,3 +1,2 @@
export { default as Modal } from "./Modal";
export { default as useModal } from "./useModal";

View file

@ -74,4 +74,3 @@ function MarkdownPreview({ content, className = "" }: MarkdownPreviewProps) {
}
export default memo(MarkdownPreview);

View file

@ -534,7 +534,7 @@ function transformInsightsGraphData(triplets: Triplet[]) {
target: string,
label: string,
}
} = {};
} = {};
for (const triplet of triplets) {
nodes[triplet[0].id] = {

View file

@ -34,8 +34,8 @@ export default function TextArea({
// Cache maxHeight on first calculation
if (maxHeightRef.current === null) {
const computedStyle = getComputedStyle(textarea);
maxHeightRef.current = computedStyle.maxHeight === "none"
? Infinity
maxHeightRef.current = computedStyle.maxHeight === "none"
? Infinity
: parseInt(computedStyle.maxHeight) || Infinity;
}

View file

@ -10,4 +10,4 @@ export { default as NeutralButton } from "./NeutralButton";
export { default as StatusIndicator } from "./StatusIndicator";
export { default as StatusDot } from "./StatusDot";
export { default as Accordion } from "./Accordion";
export { default as Notebook } from "./Notebook";
export { default as Notebook } from "./Notebook";

View file

@ -57,7 +57,7 @@ export default async function fetch(url: string, options: RequestInit = {}, useC
new Error("Backend server is not responding. Please check if the server is running.")
);
}
if (error.detail === undefined) {
return Promise.reject(
new Error("No connection to the server.")
@ -74,7 +74,7 @@ export default async function fetch(url: string, options: RequestInit = {}, useC
fetch.checkHealth = async () => {
const maxRetries = 5;
const retryDelay = 1000; // 1 second
for (let i = 0; i < maxRetries; i++) {
try {
const response = await global.fetch(`${backendApiUrl.replace("/api", "")}/health`);
@ -90,7 +90,7 @@ fetch.checkHealth = async () => {
await new Promise(resolve => setTimeout(resolve, retryDelay));
}
}
throw new Error("Backend server is not responding after multiple attempts");
};

View file

@ -105,14 +105,14 @@ If you'd rather run cognee-mcp in a container, you have two options:
```bash
# For HTTP transport (recommended for web deployments)
docker run -e TRANSPORT_MODE=http --env-file ./.env -p 8000:8000 --rm -it cognee/cognee-mcp:main
# For SSE transport
# For SSE transport
docker run -e TRANSPORT_MODE=sse --env-file ./.env -p 8000:8000 --rm -it cognee/cognee-mcp:main
# For stdio transport (default)
docker run -e TRANSPORT_MODE=stdio --env-file ./.env --rm -it cognee/cognee-mcp:main
```
**Installing optional dependencies at runtime:**
You can install optional dependencies when running the container by setting the `EXTRAS` environment variable:
```bash
# Install a single optional dependency group at runtime
@ -122,7 +122,7 @@ If you'd rather run cognee-mcp in a container, you have two options:
--env-file ./.env \
-p 8000:8000 \
--rm -it cognee/cognee-mcp:main
# Install multiple optional dependency groups at runtime (comma-separated)
docker run \
-e TRANSPORT_MODE=sse \
@ -131,7 +131,7 @@ If you'd rather run cognee-mcp in a container, you have two options:
-p 8000:8000 \
--rm -it cognee/cognee-mcp:main
```
**Available optional dependency groups:**
- `aws` - S3 storage support
- `postgres` / `postgres-binary` - PostgreSQL database support
@ -160,7 +160,7 @@ If you'd rather run cognee-mcp in a container, you have two options:
# With stdio transport (default)
docker run -e TRANSPORT_MODE=stdio --env-file ./.env --rm -it cognee/cognee-mcp:main
```
**With runtime installation of optional dependencies:**
```bash
# Install optional dependencies from Docker Hub image
@ -357,7 +357,7 @@ You can configure both transports simultaneously for testing:
"url": "http://localhost:8000/sse"
},
"cognee-http": {
"type": "http",
"type": "http",
"url": "http://localhost:8000/mcp"
}
}

View file

@ -7,11 +7,11 @@ echo "Environment: $ENVIRONMENT"
# Install optional dependencies if EXTRAS is set
if [ -n "$EXTRAS" ]; then
echo "Installing optional dependencies: $EXTRAS"
# Get the cognee version that's currently installed
COGNEE_VERSION=$(uv pip show cognee | grep "Version:" | awk '{print $2}')
echo "Current cognee version: $COGNEE_VERSION"
# Build the extras list for cognee
IFS=',' read -ra EXTRA_ARRAY <<< "$EXTRAS"
# Combine base extras from pyproject.toml with requested extras
@ -28,11 +28,11 @@ if [ -n "$EXTRAS" ]; then
fi
fi
done
echo "Installing cognee with extras: $ALL_EXTRAS"
echo "Running: uv pip install 'cognee[$ALL_EXTRAS]==$COGNEE_VERSION'"
uv pip install "cognee[$ALL_EXTRAS]==$COGNEE_VERSION"
# Verify installation
echo ""
echo "✓ Optional dependencies installation completed"
@ -93,19 +93,19 @@ if [ -n "$API_URL" ]; then
if echo "$API_URL" | grep -q "localhost" || echo "$API_URL" | grep -q "127.0.0.1"; then
echo "⚠️ Warning: API_URL contains localhost/127.0.0.1"
echo " Original: $API_URL"
# Try to use host.docker.internal (works on Mac/Windows and recent Linux with Docker Desktop)
FIXED_API_URL=$(echo "$API_URL" | sed 's/localhost/host.docker.internal/g' | sed 's/127\.0\.0\.1/host.docker.internal/g')
echo " Converted to: $FIXED_API_URL"
echo " This will work on Mac/Windows/Docker Desktop."
echo " On Linux without Docker Desktop, you may need to:"
echo " - Use --network host, OR"
echo " - Set API_URL=http://172.17.0.1:8000 (Docker bridge IP)"
API_URL="$FIXED_API_URL"
fi
API_ARGS="--api-url $API_URL"
if [ -n "$API_TOKEN" ]; then
API_ARGS="$API_ARGS --api-token $API_TOKEN"

View file

@ -16,4 +16,4 @@ EMBEDDING_API_VERSION=""
GRAPHISTRY_USERNAME=""
GRAPHISTRY_PASSWORD=""
GRAPHISTRY_PASSWORD=""

View file

@ -14,7 +14,7 @@ This starter kit is deprecated. Its examples have been integrated into the `/new
# Cognee Starter Kit
Welcome to the <a href="https://github.com/topoteretes/cognee">cognee</a> Starter Repo! This repository is designed to help you get started quickly by providing a structured dataset and pre-built data pipelines using cognee to build powerful knowledge graphs.
You can use this repo to ingest, process, and visualize data in minutes.
You can use this repo to ingest, process, and visualize data in minutes.
By following this guide, you will:
@ -80,7 +80,7 @@ Custom model uses custom pydantic model for graph extraction. This script catego
python src/pipelines/custom-model.py
```
## Graph preview
## Graph preview
cognee provides a visualize_graph function that will render the graph for you.

View file

@ -71,7 +71,7 @@ def get_sync_router() -> APIRouter:
-H "Content-Type: application/json" \\
-H "Cookie: auth_token=your-token" \\
-d '{"dataset_ids": ["123e4567-e89b-12d3-a456-426614174000", "456e7890-e12b-34c5-d678-901234567000"]}'
# Sync all user datasets (empty request body or null dataset_ids)
curl -X POST "http://localhost:8000/api/v1/sync" \\
-H "Content-Type: application/json" \\
@ -88,7 +88,7 @@ def get_sync_router() -> APIRouter:
- **413 Payload Too Large**: Dataset too large for current cloud plan
- **429 Too Many Requests**: Rate limit exceeded
## Notes
## Notes
- Sync operations run in the background - you get an immediate response
- Use the returned run_id to track progress (status API coming soon)
- Large datasets are automatically chunked for efficient transfer
@ -179,7 +179,7 @@ def get_sync_router() -> APIRouter:
```
## Example Responses
**No running syncs:**
```json
{

View file

@ -21,7 +21,7 @@ binary streams, then stores them in a specified dataset for further processing.
Supported Input Types:
- **Text strings**: Direct text content
- **File paths**: Local file paths (absolute paths starting with "/")
- **File paths**: Local file paths (absolute paths starting with "/")
- **File URLs**: "file:///absolute/path" or "file://relative/path"
- **S3 paths**: "s3://bucket-name/path/to/file"
- **Lists**: Multiple files or text strings in a single call

View file

@ -17,7 +17,7 @@ The `cognee config` command allows you to view and modify configuration settings
You can:
- View all current configuration settings
- Get specific configuration values
- Get specific configuration values
- Set configuration values
- Unset (reset to default) specific configuration values
- Reset all configuration to defaults

View file

@ -290,7 +290,7 @@ class NeptuneAnalyticsAdapter(NeptuneGraphDB, VectorDBInterface):
query_string = f"""
CALL neptune.algo.vectors.topKByEmbeddingWithFiltering({{
topK: {limit},
embedding: {embedding},
embedding: {embedding},
nodeFilter: {{ equals: {{property: '{self._COLLECTION_PREFIX}', value: '{collection_name}'}} }}
}}
)
@ -299,7 +299,7 @@ class NeptuneAnalyticsAdapter(NeptuneGraphDB, VectorDBInterface):
if with_vector:
query_string += """
WITH node, score, id(node) as node_id
WITH node, score, id(node) as node_id
MATCH (n)
WHERE id(n) = id(node)
CALL neptune.algo.vectors.get(n)

View file

@ -10,4 +10,4 @@ Extraction rules:
5. Current-time references ("now", "current", "today"): If the query explicitly refers to the present, set both starts_at and ends_at to now (the ingestion timestamp).
6. "Who is" and "Who was" questions: These imply a general identity or biographical inquiry without a specific temporal scope. Set both starts_at and ends_at to None.
7. Ordering rule: Always ensure the earlier date is assigned to starts_at and the later date to ends_at.
8. No temporal information: If no valid or inferable time reference is found, set both starts_at and ends_at to None.
8. No temporal information: If no valid or inferable time reference is found, set both starts_at and ends_at to None.

View file

@ -22,4 +22,4 @@ The `attributes` should be a list of dictionaries, each containing:
- Relationships should be technical with one or at most two words. If two words, use underscore camelcase style
- Relationships could imply general meaning like: subject, object, participant, recipient, agent, instrument, tool, source, cause, effect, purpose, manner, resource, etc.
- You can combine two words to form a relationship name: subject_role, previous_owner, etc.
- Focus on how the entity specifically relates to the event
- Focus on how the entity specifically relates to the event

View file

@ -27,4 +27,4 @@ class Event(BaseModel):
time_from: Optional[Timestamp] = None
time_to: Optional[Timestamp] = None
location: Optional[str] = None
```
```

View file

@ -2,12 +2,12 @@ You are an expert query analyzer for a **GraphRAG system**. Your primary goal is
Here are the available `SearchType` tools and their specific functions:
- **`SUMMARIES`**: The `SUMMARIES` search type retrieves summarized information from the knowledge graph.
- **`SUMMARIES`**: The `SUMMARIES` search type retrieves summarized information from the knowledge graph.
**Best for:**
**Best for:**
- Getting concise overviews of topics
- Summarizing large amounts of information
- Getting concise overviews of topics
- Summarizing large amounts of information
- Quick understanding of complex subjects
**Best for:**
@ -16,7 +16,7 @@ Here are the available `SearchType` tools and their specific functions:
- Understanding relationships between concepts
- Exploring the structure of your knowledge graph
* **`CHUNKS`**: The `CHUNKS` search type retrieves specific facts and information chunks from the knowledge graph.
* **`CHUNKS`**: The `CHUNKS` search type retrieves specific facts and information chunks from the knowledge graph.
**Best for:**
@ -122,4 +122,4 @@ Response: `NATURAL_LANGUAGE`
Your response MUST be a single word, consisting of only the chosen `SearchType` name. Do not provide any explanation.
Your response MUST be a single word, consisting of only the chosen `SearchType` name. Do not provide any explanation.

View file

@ -1 +1 @@
Respond with: test
Respond with: test

View file

@ -973,4 +973,4 @@
"python_version": null,
"pep_status": null
}
]
]

View file

@ -76,4 +76,4 @@ Section: Open Questions or TODOs
Create a checklist of unresolved decisions, logic that needs clarification, or tasks that are still pending.
Section: Last Updated
Include the most recent update date and who made the update.
Include the most recent update date and who made the update.

View file

@ -72,4 +72,3 @@ profile = "black"
- E501: line too long -> break with parentheses
- E225: missing whitespace around operator
- E402: module import not at top of file

View file

@ -72,4 +72,3 @@ Use modules/packages to separate concerns; avoid wildcard imports.
- Is this the simplest working solution?
- Are errors explicit and logged?
- Are modules/namespaces used appropriately?

View file

@ -1 +0,0 @@

View file

@ -1 +0,0 @@

View file

@ -46,10 +46,10 @@ async def test_textdocument_cleanup_with_sql():
# Step 1: Add and cognify a test document
dataset_name = "test_cleanup_dataset"
test_text = """
Machine learning is a subset of artificial intelligence that enables systems to learn
and improve from experience without being explicitly programmed. Deep learning uses
neural networks with multiple layers to process data.
test_text = """
Machine learning is a subset of artificial intelligence that enables systems to learn
and improve from experience without being explicitly programmed. Deep learning uses
neural networks with multiple layers to process data.
"""
await setup()

View file

@ -47,20 +47,20 @@ async def main():
# Test data
text_1 = """
Apple Inc. is an American multinational technology company that specializes in consumer electronics,
software, and online services. Apple is the world's largest technology company by revenue and,
Apple Inc. is an American multinational technology company that specializes in consumer electronics,
software, and online services. Apple is the world's largest technology company by revenue and,
since January 2021, the world's most valuable company.
"""
text_2 = """
Microsoft Corporation is an American multinational technology corporation which produces computer software,
consumer electronics, personal computers, and related services. Its best known software products are the
Microsoft Corporation is an American multinational technology corporation which produces computer software,
consumer electronics, personal computers, and related services. Its best known software products are the
Microsoft Windows line of operating systems and the Microsoft Office suite.
"""
text_3 = """
Google LLC is an American multinational technology company that specializes in Internet-related services and products,
which include online advertising technologies, search engine, cloud computing, software, and hardware. Google has been
Google LLC is an American multinational technology company that specializes in Internet-related services and products,
which include online advertising technologies, search engine, cloud computing, software, and hardware. Google has been
referred to as the most powerful company in the world and one of the world's most valuable brands.
"""

View file

@ -19,7 +19,7 @@ Clone the Repository Clone this repository to your local machine and navigate t
helm install cognee ./cognee-chart
```
**Uninstall Helm Release**:
**Uninstall Helm Release**:
```bash
helm uninstall cognee
```

View file

@ -43,4 +43,3 @@ networks:
volumes:
postgres_data:

View file

@ -11,4 +11,3 @@ spec:
targetPort: {{ .Values.postgres.port }}
selector:
app: {{ .Release.Name }}-postgres

View file

@ -3,4 +3,4 @@ numpy==1.26.4
matplotlib==3.10.0
seaborn==0.13.2
scipy==1.11.4
pathlib
pathlib

View file

@ -34,4 +34,4 @@ What began as an online bookstore has grown into one of the largest e-commerce p
Meta, originally known as Facebook, revolutionized social media by connecting billions of people worldwide. Beyond its core social networking service, Meta is investing in the next generation of digital experiences through virtual and augmented reality technologies, with projects like Oculus. The company's efforts signal a commitment to evolving digital interaction and building the metaverse—a shared virtual space where users can connect and collaborate.
Each of these companies has significantly impacted the technology landscape, driving innovation and transforming everyday life through their groundbreaking products and services.
"""
"""

View file

@ -63,10 +63,10 @@ async def main():
traversals.
"""
sample_text_2 = """Neptune Analytics is an ideal choice for investigatory, exploratory, or data-science workloads
that require fast iteration for data, analytical and algorithmic processing, or vector search on graph data. It
complements Amazon Neptune Database, a popular managed graph database. To perform intensive analysis, you can load
the data from a Neptune Database graph or snapshot into Neptune Analytics. You can also load graph data that's
sample_text_2 = """Neptune Analytics is an ideal choice for investigatory, exploratory, or data-science workloads
that require fast iteration for data, analytical and algorithmic processing, or vector search on graph data. It
complements Amazon Neptune Database, a popular managed graph database. To perform intensive analysis, you can load
the data from a Neptune Database graph or snapshot into Neptune Analytics. You can also load graph data that's
stored in Amazon S3.
"""

View file

@ -165,8 +165,8 @@ async def main():
// If a stored preference exists and it does not match the new value,
// raise an error using APOC's utility procedure.
CALL apoc.util.validate(
preference IS NOT NULL AND preference.value <> new_size,
"Conflicting shoe size preference: existing size is " + preference.value + " and new size is " + new_size,
preference IS NOT NULL AND preference.value <> new_size,
"Conflicting shoe size preference: existing size is " + preference.value + " and new size is " + new_size,
[]
)

View file

@ -35,16 +35,16 @@ biography_1 = """
biography_2 = """
Arnulf Øverland Ole Peter Arnulf Øverland ( 27 April 1889 25 March 1968 ) was a Norwegian poet and artist . He is principally known for his poetry which served to inspire the Norwegian resistance movement during the German occupation of Norway during World War II .
Biography .
Øverland was born in Kristiansund and raised in Bergen . His parents were Peter Anton Øverland ( 18521906 ) and Hanna Hage ( 18541939 ) . The early death of his father , left the family economically stressed . He was able to attend Bergen Cathedral School and in 1904 Kristiania Cathedral School . He graduated in 1907 and for a time studied philology at University of Kristiania . Øverland published his first collection of poems ( 1911 ) .
Øverland became a communist sympathizer from the early 1920s and became a member of Mot Dag . He also served as chairman of the Norwegian Students Society 192328 . He changed his stand in 1937 , partly as an expression of dissent against the ongoing Moscow Trials . He was an avid opponent of Nazism and in 1936 he wrote the poem Du ikke sove which was printed in the journal Samtiden . It ends with . ( I thought: : Something is imminent . Our era is over Europes on fire! ) . Probably the most famous line of the poem is ( You mustnt endure so well the injustice that doesnt affect you yourself! )
During the German occupation of Norway from 1940 in World War II , he wrote to inspire the Norwegian resistance movement . He wrote a series of poems which were clandestinely distributed , leading to the arrest of both him and his future wife Margrete Aamot Øverland in 1941 . Arnulf Øverland was held first in the prison camp of Grini before being transferred to Sachsenhausen concentration camp in Germany . He spent a four-year imprisonment until the liberation of Norway in 1945 . His poems were later collected in Vi overlever alt and published in 1945 .
Øverland played an important role in the Norwegian language struggle in the post-war era . He became a noted supporter for the conservative written form of Norwegian called Riksmål , he was president of Riksmålsforbundet ( an organization in support of Riksmål ) from 1947 to 1956 . In addition , Øverland adhered to the traditionalist style of writing , criticising modernist poetry on several occasions . His speech Tungetale fra parnasset , published in Arbeiderbladet in 1954 , initiated the so-called Glossolalia debate .
Personal life .
In 1918 he had married the singer Hildur Arntzen ( 18881957 ) . Their marriage was dissolved in 1939 . In 1940 , he married Bartholine Eufemia Leganger ( 19031995 ) . They separated shortly after , and were officially divorced in 1945 . Øverland was married to journalist Margrete Aamot Øverland ( 19131978 ) during June 1945 . In 1946 , the Norwegian Parliament arranged for Arnulf and Margrete Aamot Øverland to reside at the Grotten . He lived there until his death in 1968 and she lived there for another ten years until her death in 1978 . Arnulf Øverland was buried at Vår Frelsers Gravlund in Oslo . Joseph Grimeland designed the bust of Arnulf Øverland ( bronze , 1970 ) at his grave site .
@ -56,7 +56,7 @@ biography_2 = """
- Vi overlever alt ( 1945 )
- Sverdet bak døren ( 1956 )
- Livets minutter ( 1965 )
Awards .
- Gyldendals Endowment ( 1935 )
- Dobloug Prize ( 1951 )

View file

@ -14,7 +14,7 @@
.nodes circle { stroke: white; stroke-width: 0.5px; filter: drop-shadow(0 0 5px rgba(255,255,255,0.3)); }
.node-label { font-size: 5px; font-weight: bold; fill: white; text-anchor: middle; dominant-baseline: middle; font-family: 'Inter', sans-serif; pointer-events: none; }
.edge-label { font-size: 3px; fill: rgba(255, 255, 255, 0.7); text-anchor: middle; dominant-baseline: middle; font-family: 'Inter', sans-serif; pointer-events: none; }
.tooltip {
position: absolute;
text-align: left;
@ -76,7 +76,7 @@
// Create tooltip content for edge
var content = "<strong>Edge Information</strong><br/>";
content += "Relationship: " + d.relation + "<br/>";
// Show all weights
if (d.all_weights && Object.keys(d.all_weights).length > 0) {
content += "<strong>Weights:</strong><br/>";
@ -86,23 +86,23 @@
} else if (d.weight !== null && d.weight !== undefined) {
content += "Weight: " + d.weight + "<br/>";
}
if (d.relationship_type) {
content += "Type: " + d.relationship_type + "<br/>";
}
// Add other edge properties
if (d.edge_info) {
Object.keys(d.edge_info).forEach(function(key) {
if (key !== 'weight' && key !== 'weights' && key !== 'relationship_type' &&
key !== 'source_node_id' && key !== 'target_node_id' &&
key !== 'relationship_name' && key !== 'updated_at' &&
if (key !== 'weight' && key !== 'weights' && key !== 'relationship_type' &&
key !== 'source_node_id' && key !== 'target_node_id' &&
key !== 'relationship_name' && key !== 'updated_at' &&
!key.startsWith('weight_')) {
content += key + ": " + d.edge_info[key] + "<br/>";
}
});
}
tooltip.html(content)
.style("left", (d3.event.pageX + 10) + "px")
.style("top", (d3.event.pageY - 10) + "px")
@ -209,4 +209,3 @@
</svg>
</body>
</html>

2
mise.toml Normal file
View file

@ -0,0 +1,2 @@
[tools]
python = "latest"

View file

@ -118,4 +118,4 @@ ignore_missing_imports = True
ignore_missing_imports = True
[mypy-pytz.*]
ignore_missing_imports = True
ignore_missing_imports = True

View file

@ -63,10 +63,10 @@ async def main():
traversals.
"""
sample_text_2 = """Neptune Analytics is an ideal choice for investigatory, exploratory, or data-science workloads
that require fast iteration for data, analytical and algorithmic processing, or vector search on graph data. It
complements Amazon Neptune Database, a popular managed graph database. To perform intensive analysis, you can load
the data from a Neptune Database graph or snapshot into Neptune Analytics. You can also load graph data that's
sample_text_2 = """Neptune Analytics is an ideal choice for investigatory, exploratory, or data-science workloads
that require fast iteration for data, analytical and algorithmic processing, or vector search on graph data. It
complements Amazon Neptune Database, a popular managed graph database. To perform intensive analysis, you can load
the data from a Neptune Database graph or snapshot into Neptune Analytics. You can also load graph data that's
stored in Amazon S3.
"""

View file

@ -50,4 +50,3 @@
"department": "HR"
}
]

View file

@ -106,4 +106,3 @@
"action": "purchased"
}]
}]

View file

@ -165,8 +165,8 @@ async def main():
// If a stored preference exists and it does not match the new value,
// raise an error using APOC's utility procedure.
CALL apoc.util.validate(
preference IS NOT NULL AND preference.value <> new_size,
"Conflicting shoe size preference: existing size is " + preference.value + " and new size is " + new_size,
preference IS NOT NULL AND preference.value <> new_size,
"Conflicting shoe size preference: existing size is " + preference.value + " and new size is " + new_size,
[]
)

View file

@ -35,16 +35,16 @@ biography_1 = """
biography_2 = """
Arnulf Øverland Ole Peter Arnulf Øverland ( 27 April 1889 25 March 1968 ) was a Norwegian poet and artist . He is principally known for his poetry which served to inspire the Norwegian resistance movement during the German occupation of Norway during World War II .
Biography .
Øverland was born in Kristiansund and raised in Bergen . His parents were Peter Anton Øverland ( 18521906 ) and Hanna Hage ( 18541939 ) . The early death of his father , left the family economically stressed . He was able to attend Bergen Cathedral School and in 1904 Kristiania Cathedral School . He graduated in 1907 and for a time studied philology at University of Kristiania . Øverland published his first collection of poems ( 1911 ) .
Øverland became a communist sympathizer from the early 1920s and became a member of Mot Dag . He also served as chairman of the Norwegian Students Society 192328 . He changed his stand in 1937 , partly as an expression of dissent against the ongoing Moscow Trials . He was an avid opponent of Nazism and in 1936 he wrote the poem Du ikke sove which was printed in the journal Samtiden . It ends with . ( I thought: : Something is imminent . Our era is over Europes on fire! ) . Probably the most famous line of the poem is ( You mustnt endure so well the injustice that doesnt affect you yourself! )
During the German occupation of Norway from 1940 in World War II , he wrote to inspire the Norwegian resistance movement . He wrote a series of poems which were clandestinely distributed , leading to the arrest of both him and his future wife Margrete Aamot Øverland in 1941 . Arnulf Øverland was held first in the prison camp of Grini before being transferred to Sachsenhausen concentration camp in Germany . He spent a four-year imprisonment until the liberation of Norway in 1945 . His poems were later collected in Vi overlever alt and published in 1945 .
Øverland played an important role in the Norwegian language struggle in the post-war era . He became a noted supporter for the conservative written form of Norwegian called Riksmål , he was president of Riksmålsforbundet ( an organization in support of Riksmål ) from 1947 to 1956 . In addition , Øverland adhered to the traditionalist style of writing , criticising modernist poetry on several occasions . His speech Tungetale fra parnasset , published in Arbeiderbladet in 1954 , initiated the so-called Glossolalia debate .
Personal life .
In 1918 he had married the singer Hildur Arntzen ( 18881957 ) . Their marriage was dissolved in 1939 . In 1940 , he married Bartholine Eufemia Leganger ( 19031995 ) . They separated shortly after , and were officially divorced in 1945 . Øverland was married to journalist Margrete Aamot Øverland ( 19131978 ) during June 1945 . In 1946 , the Norwegian Parliament arranged for Arnulf and Margrete Aamot Øverland to reside at the Grotten . He lived there until his death in 1968 and she lived there for another ten years until her death in 1978 . Arnulf Øverland was buried at Vår Frelsers Gravlund in Oslo . Joseph Grimeland designed the bust of Arnulf Øverland ( bronze , 1970 ) at his grave site .
@ -56,7 +56,7 @@ biography_2 = """
- Vi overlever alt ( 1945 )
- Sverdet bak døren ( 1956 )
- Livets minutter ( 1965 )
Awards .
- Gyldendals Endowment ( 1935 )
- Dobloug Prize ( 1951 )

View file

@ -60,7 +60,9 @@ dependencies = [
"fakeredis[lua]>=2.32.0",
"diskcache>=5.6.3",
"aiolimiter>=1.2.1",
"urllib3>=2.6.0"
"urllib3>=2.6.0",
"cbor2>=5.8.0"
]
[project.optional-dependencies]

View file

@ -58,4 +58,3 @@ fi
# error in package
exit 1

View file

@ -26,4 +26,4 @@ if [ -z $error ]; then
fi
# error in package
exit 1
exit 1

68
uv.lock generated
View file

@ -675,43 +675,39 @@ wheels = [
[[package]]
name = "cbor2"
version = "5.7.1"
version = "5.8.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a2/b8/c0f6a7d46f816cb18b1fda61a2fe648abe16039f1ff93ea720a6e9fb3cee/cbor2-5.7.1.tar.gz", hash = "sha256:7a405a1d7c8230ee9acf240aad48ae947ef584e8af05f169f3c1bde8f01f8b71", size = 102467 }
sdist = { url = "https://files.pythonhosted.org/packages/d9/8e/8b4fdde28e42ffcd741a37f4ffa9fb59cd4fe01625b544dfcfd9ccb54f01/cbor2-5.8.0.tar.gz", hash = "sha256:b19c35fcae9688ac01ef75bad5db27300c2537eb4ee00ed07e05d8456a0d4931", size = 107825 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c7/08/a9b3e777ace829d9d782f0a80877085af24708d73bd1c41c296aeba4ebac/cbor2-5.7.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a0fc6cc50e0aa04e54792e7824e65bf66c691ae2948d7c012153df2bab1ee314", size = 67914 },
{ url = "https://files.pythonhosted.org/packages/5d/b5/1c23af80b279d5ec336c57e41a53bf8158e2ec3610b415cbc74887145d5d/cbor2-5.7.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c2fe69c1473d18d102f1e20982edab5bfa543fa1cda9888bdecc49f8b2f3d720", size = 68445 },
{ url = "https://files.pythonhosted.org/packages/f6/76/4d14dce9acd92333a249c676579e4879c492efda142c91c242044a70816d/cbor2-5.7.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:34cbbe4fcf82080412a641984a0be43dfe66eac50a8f45596da63fde36189450", size = 254506 },
{ url = "https://files.pythonhosted.org/packages/b0/70/d835e91d53bc9df4d77764262489b6de505cfa400799a6625e9368391ea7/cbor2-5.7.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4fc3d3f00aed397a1e4634b8e1780f347aad191a2e1e7768a233baadd4f87561", size = 247760 },
{ url = "https://files.pythonhosted.org/packages/29/c7/7fe1c82b5ddb00a407f016ca0de0560e47b3f6c15228478911b3b9ffb0e2/cbor2-5.7.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:99e1666887a868e619096e9b5953734efd034f577e078f4efc5abd23dc1bcd32", size = 250188 },
{ url = "https://files.pythonhosted.org/packages/49/fd/40887b1aee3270284d2e9ac6740566a554cb6fd7ca9f251d7e1ee86ba1c3/cbor2-5.7.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:59b78c90a5e682e7d004586fb662be6e451ec06f32fc3a738bbfb9576c72ecc9", size = 244190 },
{ url = "https://files.pythonhosted.org/packages/81/ba/9a91f4046c9a101fc68c23913c916d1fbcb6fae11d6a6f574f91c26ed31a/cbor2-5.7.1-cp310-cp310-win_amd64.whl", hash = "sha256:6300e0322e52f831892054f1ccf25e67fa8040664963d358db090f29d8976ae4", size = 68150 },
{ url = "https://files.pythonhosted.org/packages/12/1e/aad24a2fe0b54353e19aaad06f7d7eb2d835dc4f5bbf5882f98be20e8744/cbor2-5.7.1-cp310-cp310-win_arm64.whl", hash = "sha256:7badbde0d89eb7c8b9f7ef8e4f2395c02cfb24b514815656fef8e23276a7cd36", size = 64123 },
{ url = "https://files.pythonhosted.org/packages/52/67/319baac9c51de0053f58fa74a9548f93f3629aa3adeebd7d2c99d1379370/cbor2-5.7.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2b1efbe6e82721be44b9faf47d0fd97b0150213eb6a4ba554f4947442bc4e13f", size = 67894 },
{ url = "https://files.pythonhosted.org/packages/2c/53/d23d0a234a4a098b019ac1cadd33631c973142fc947a68c4a38ca47aa5dc/cbor2-5.7.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fb94bab27e00283bdd8f160e125e17dbabec4c9e6ffc8da91c36547ec1eb707f", size = 68444 },
{ url = "https://files.pythonhosted.org/packages/3a/a2/a6fa59e1c23b0bc77628d64153eb9fc69ac8dde5f8ed41a7d5316fcd0bcd/cbor2-5.7.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:29f22266b5e08e0e4152e87ba185e04d3a84a4fd545b99ae3ebe42c658c66a53", size = 261600 },
{ url = "https://files.pythonhosted.org/packages/3d/cb/e0fa066aa7a09b15b8f56bafef6b2be19d9db31310310b0a5601af5c0128/cbor2-5.7.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:25d4c7554d6627da781c9bd1d0dd0709456eecb71f605829f98961bb98487dda", size = 254904 },
{ url = "https://files.pythonhosted.org/packages/2c/d5/b1fb4a3828c440e100a4b2658dd2e8f422faf08f4fcc8e2c92b240656b44/cbor2-5.7.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:f1e15c3a08008cf13ce1dfc64d17c960df5d66d935788d28ec7df54bf0ffb0ef", size = 257388 },
{ url = "https://files.pythonhosted.org/packages/34/d5/252657bc5af964fc5f19c0e0e82031b4c32eba5d3ed4098e963e0e8c47a6/cbor2-5.7.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9f6cdf7eb604ea0e7ef34e3f0b5447da0029ecd3ab7b2dc70e43fa5f7bcfca89", size = 251494 },
{ url = "https://files.pythonhosted.org/packages/8a/3a/503ea4c2977411858ca287808d077fdb4bb1fafdb4b39177b8ce3d5619ac/cbor2-5.7.1-cp311-cp311-win_amd64.whl", hash = "sha256:dd25cbef8e8e6dbf69f0de95311aecaca7217230cda83ae99fdc37cd20d99250", size = 68147 },
{ url = "https://files.pythonhosted.org/packages/49/9e/fe4c9703fd444da193f892787110c5da2a85c16d26917fcb2584f5d00077/cbor2-5.7.1-cp311-cp311-win_arm64.whl", hash = "sha256:40cc9c67242a7abac5a4e062bc4d1d2376979878c0565a4b2f08fd9ed9212945", size = 64126 },
{ url = "https://files.pythonhosted.org/packages/56/54/48426472f0c051982c647331441aed09b271a0500356ae0b7054c813d174/cbor2-5.7.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:bd5ca44891c06f6b85d440836c967187dc1d30b15f86f315d55c675d3a841078", size = 69031 },
{ url = "https://files.pythonhosted.org/packages/d3/68/1dd58c7706e9752188358223db58c83f3c48e07f728aa84221ffd244652f/cbor2-5.7.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:537d73ef930ccc1a7b6a2e8d2cbf81407d270deb18e40cda5eb511bd70f71078", size = 68825 },
{ url = "https://files.pythonhosted.org/packages/09/4e/380562fe9f9995a1875fb5ec26fd041e19d61f4630cb690a98c5195945fc/cbor2-5.7.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:edbf814dd7763b6eda27a5770199f6ccd55bd78be8f4367092460261bfbf19d0", size = 286222 },
{ url = "https://files.pythonhosted.org/packages/7c/bb/9eccdc1ea3c4d5c7cdb2e49b9de49534039616be5455ce69bd64c0b2efe2/cbor2-5.7.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9fc81da8c0e09beb42923e455e477b36ff14a03b9ca18a8a2e9b462de9a953e8", size = 285688 },
{ url = "https://files.pythonhosted.org/packages/59/8c/4696d82f5bd04b3d45d9a64ec037fa242630c134e3218d6c252b4f59b909/cbor2-5.7.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e4a7d660d428911a3aadb7105e94438d7671ab977356fdf647a91aab751033bd", size = 277063 },
{ url = "https://files.pythonhosted.org/packages/95/50/6538e44ca970caaad2fa376b81701d073d84bf597aac07a59d0a253b1a7f/cbor2-5.7.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:228e0af9c0a9ddf6375b6ae010eaa1942a1901d403f134ac9ee6a76a322483f9", size = 278334 },
{ url = "https://files.pythonhosted.org/packages/64/a9/156ccd2207fb26b5b61d23728b4dbdc595d1600125aa79683a4a8ddc9313/cbor2-5.7.1-cp312-cp312-win_amd64.whl", hash = "sha256:2d08a6c0d9ed778448e185508d870f4160ba74f59bb17a966abd0d14d0ff4dd3", size = 68404 },
{ url = "https://files.pythonhosted.org/packages/4f/49/adc53615e9dd32c4421f6935dfa2235013532c6e6b28ee515bbdd92618be/cbor2-5.7.1-cp312-cp312-win_arm64.whl", hash = "sha256:752506cfe72da0f4014b468b30191470ee8919a64a0772bd3b36a4fccf5fcefc", size = 64047 },
{ url = "https://files.pythonhosted.org/packages/16/b1/51fb868fe38d893c570bb90b38d365ff0f00421402c1ae8f63b31b25d665/cbor2-5.7.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:59d5da59fffe89692d5bd1530eef4d26e4eb7aa794aaa1f4e192614786409009", size = 69068 },
{ url = "https://files.pythonhosted.org/packages/b9/db/5abc62ec456f552f617aac3359a5d7114b23be9c4d886169592cd5f074b9/cbor2-5.7.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:533117918d518e01348f8cd0331271c207e7224b9a1ed492a0ff00847f28edc8", size = 68927 },
{ url = "https://files.pythonhosted.org/packages/9a/c2/58d787395c99874d2a2395b3a22c9d48a3cfc5a7dcd5817bf74764998b75/cbor2-5.7.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8d6d9436ff3c3323ea5863ecf7ae1139590991685b44b9eb6b7bb1734a594af6", size = 285185 },
{ url = "https://files.pythonhosted.org/packages/d0/9c/b680b264a8f4b9aa59c95e166c816275a13138cbee92dd2917f58bca47b9/cbor2-5.7.1-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:661b871ca754a619fcd98c13a38b4696b2b57dab8b24235c00b0ba322c040d24", size = 284440 },
{ url = "https://files.pythonhosted.org/packages/1f/59/68183c655d6226d0eee10027f52516882837802a8d5746317a88362ed686/cbor2-5.7.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:d8065aa90d715fd9bb28727b2d774ee16e695a0e1627ae76e54bf19f9d99d63f", size = 276876 },
{ url = "https://files.pythonhosted.org/packages/ee/a2/1964e0a569d2b81e8f4862753fee7701ae5773c22e45492a26f92f62e75a/cbor2-5.7.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:cb1b7047d73590cfe8e373e2c804fa99be47e55b1b6186602d0f86f384cecec1", size = 278216 },
{ url = "https://files.pythonhosted.org/packages/00/78/9b566d68cb88bb1ecebe354765625161c9d6060a16e55008006d6359f776/cbor2-5.7.1-cp313-cp313-win_amd64.whl", hash = "sha256:31d511df7ebd6624fdb4cecdafb4ffb9a205f9ff8c8d98edd1bef0d27f944d74", size = 68451 },
{ url = "https://files.pythonhosted.org/packages/db/85/7a6a922d147d027fd5d8fd5224b39e8eaf152a42e8cf16351458096d3d62/cbor2-5.7.1-cp313-cp313-win_arm64.whl", hash = "sha256:f5d37f7b0f84394d2995bd8722cb01c86a885c4821a864a34b7b4d9950c5e26e", size = 64111 },
{ url = "https://files.pythonhosted.org/packages/d5/7d/383bafeabb54c17fe5b6d5aca4e863e6b7df10bcc833b34aa169e9dfce1a/cbor2-5.7.1-py3-none-any.whl", hash = "sha256:68834e4eff2f56629ce6422b0634bc3f74c5a4269de5363f5265fe452c706ba7", size = 23829 },
{ url = "https://files.pythonhosted.org/packages/3c/05/486166d9e998d65d70810e63eeacc8c5f13d167d8797cf2d73a588beb335/cbor2-5.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2263c0c892194f10012ced24c322d025d9d7b11b41da1c357f3b3fe06676e6b7", size = 69882 },
{ url = "https://files.pythonhosted.org/packages/4e/d0/ee976eaaf21c211eef651e1a921c109c3c3a3785d98307d74a70d142f341/cbor2-5.8.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6ffe4ca079f6f8ed393f5c71a8de22651cb27bd50e74e2bcd6bc9c8f853a732b", size = 260696 },
{ url = "https://files.pythonhosted.org/packages/66/7f/81cabd3aee6cc54b101a5214d5c3e541d275d7c05647c7dfc266c6aacf6f/cbor2-5.8.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0427bd166230fe4c4b72965c6f2b6273bf29016d97cf08b258fa48db851ea598", size = 252135 },
{ url = "https://files.pythonhosted.org/packages/c2/0b/f38e8c579e7e2d88d446549bce35bde7d845199300bc456b4123d6e6f0af/cbor2-5.8.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c23a04947c37964d70028ca44ea2a8709f09b8adc0090f9b5710fa957e9bc545", size = 255342 },
{ url = "https://files.pythonhosted.org/packages/5d/02/8413f1bd42c8f665fb85374151599cb4957848f0f307d08334a08dee544c/cbor2-5.8.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:218d5c7d2e8d13c7eded01a1b3fe2a9a1e51a7a843cefb8d38cb4bbbc6ad9bf7", size = 247191 },
{ url = "https://files.pythonhosted.org/packages/e5/b8/edeffcad06b83d3661827973a8e6f5d51a9f5842e1ee9d191fdef60388ad/cbor2-5.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:4ce7d907a25448af7c13415281d739634edfd417228b274309b243ca52ad71f9", size = 69254 },
{ url = "https://files.pythonhosted.org/packages/ce/1a/dde6537d8d1c2b3157ea6487ea417a5ad0157687d0e9a3ff806bf23c8cb1/cbor2-5.8.0-cp310-cp310-win_arm64.whl", hash = "sha256:628d0ea850aa040921a0e50a08180e7d20cf691432cec3eabc193f643eccfbde", size = 64946 },
{ url = "https://files.pythonhosted.org/packages/88/4b/623435ef9b98e86b6956a41863d39ff4fe4d67983948b5834f55499681dd/cbor2-5.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:18ac191640093e6c7fbcb174c006ffec4106c3d8ab788e70272c1c4d933cbe11", size = 69875 },
{ url = "https://files.pythonhosted.org/packages/58/17/f664201080b2a7d0f57c16c8e9e5922013b92f202e294863ec7e75b7ff7f/cbor2-5.8.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:fddee9103a17d7bed5753f0c7fc6663faa506eb953e50d8287804eccf7b048e6", size = 268316 },
{ url = "https://files.pythonhosted.org/packages/d0/e1/072745b4ff01afe9df2cd627f8fc51a1acedb5d3d1253765625d2929db91/cbor2-5.8.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8d2ea26fad620aba5e88d7541be8b10c5034a55db9a23809b7cb49f36803f05b", size = 258874 },
{ url = "https://files.pythonhosted.org/packages/a7/10/61c262b886d22b62c56e8aac6d10fa06d0953c997879ab882a31a624952b/cbor2-5.8.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:de68b4b310b072b082d317adc4c5e6910173a6d9455412e6183d72c778d1f54c", size = 261971 },
{ url = "https://files.pythonhosted.org/packages/7e/42/b7862f5e64364b10ad120ea53e87ec7e891fb268cb99c572348e647cf7e9/cbor2-5.8.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:418d2cf0e03e90160fa1474c05a40fe228bbb4a92d1628bdbbd13a48527cb34d", size = 254151 },
{ url = "https://files.pythonhosted.org/packages/16/6a/8d3636cf75466c18615e7cfac0d345ee3c030f6c79535faed0c2c02b1839/cbor2-5.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:453200ffa1c285ea46ab5745736a015526d41f22da09cb45594624581d959770", size = 69169 },
{ url = "https://files.pythonhosted.org/packages/9b/88/79b205bf869558b39a11de70750cb13679b27ba5654a43bed3f2aee7d1b4/cbor2-5.8.0-cp311-cp311-win_arm64.whl", hash = "sha256:f6615412fca973a8b472b3efc4dab01df71cc13f15d8b2c0a1cffac44500f12d", size = 64955 },
{ url = "https://files.pythonhosted.org/packages/2f/4f/3a16e3e8fd7e5fd86751a4f1aad218a8d19a96e75ec3989c3e95a8fe1d8f/cbor2-5.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4b3f91fa699a5ce22470e973601c62dd9d55dc3ca20ee446516ac075fcab27c9", size = 70270 },
{ url = "https://files.pythonhosted.org/packages/38/81/0d0cf0796fe8081492a61c45278f03def21a929535a492dd97c8438f5dbe/cbor2-5.8.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:518c118a5e00001854adb51f3164e647aa99b6a9877d2a733a28cb5c0a4d6857", size = 286242 },
{ url = "https://files.pythonhosted.org/packages/7b/a9/fdab6c10190cfb8d639e01f2b168f2406fc847a2a6bc00e7de78c3381d0a/cbor2-5.8.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cff2a1999e49cd51c23d1b6786a012127fd8f722c5946e82bd7ab3eb307443f3", size = 285412 },
{ url = "https://files.pythonhosted.org/packages/31/59/746a8e630996217a3afd523f583fcf7e3d16640d63f9a03f0f4e4f74b5b1/cbor2-5.8.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4c4492160212374973cdc14e46f0565f2462721ef922b40f7ea11e7d613dfb2a", size = 278041 },
{ url = "https://files.pythonhosted.org/packages/0f/a3/f3bbeb6dedd45c6e0cddd627ea790dea295eaf82c83f0e2159b733365ebd/cbor2-5.8.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:546c7c7c4c6bcdc54a59242e0e82cea8f332b17b4465ae628718fef1fce401ca", size = 278185 },
{ url = "https://files.pythonhosted.org/packages/67/e5/9013d6b857ceb6cdb2851ffb5a887f53f2bab934a528c9d6fa73d9989d84/cbor2-5.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:074f0fa7535dd7fdee247c2c99f679d94f3aa058ccb1ccf4126cc72d6d89cbae", size = 69817 },
{ url = "https://files.pythonhosted.org/packages/a8/ab/7aa94ba3d44ecbc3a97bdb2fb6a8298063fe2e0b611e539a6fe41e36da20/cbor2-5.8.0-cp312-cp312-win_arm64.whl", hash = "sha256:f95fed480b2a0d843f294d2a1ef4cc0f6a83c7922927f9f558e1f5a8dc54b7ca", size = 64923 },
{ url = "https://files.pythonhosted.org/packages/a6/0d/5a3f20bafaefeb2c1903d961416f051c0950f0d09e7297a3aa6941596b29/cbor2-5.8.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6d8d104480845e2f28c6165b4c961bbe58d08cb5638f368375cfcae051c28015", size = 70332 },
{ url = "https://files.pythonhosted.org/packages/57/66/177a3f089e69db69c987453ab4934086408c3338551e4984734597be9f80/cbor2-5.8.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:43efee947e5ab67d406d6e0dc61b5dee9d2f5e89ae176f90677a3741a20ca2e7", size = 285985 },
{ url = "https://files.pythonhosted.org/packages/b7/8e/9e17b8e4ed80a2ce97e2dfa5915c169dbb31599409ddb830f514b57f96cc/cbor2-5.8.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:be7ae582f50be539e09c134966d0fd63723fc4789b8dff1f6c2e3f24ae3eaf32", size = 285173 },
{ url = "https://files.pythonhosted.org/packages/cc/33/9f92e107d78f88ac22723ac15d0259d220ba98c1d855e51796317f4c4114/cbor2-5.8.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:50f5c709561a71ea7970b4cd2bf9eda4eccacc0aac212577080fdfe64183e7f5", size = 278395 },
{ url = "https://files.pythonhosted.org/packages/2f/3f/46b80050a4a35ce5cf7903693864a9fdea7213567dc8faa6e25cb375c182/cbor2-5.8.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a6790ecc73aa93e76d2d9076fc42bf91a9e69f2295e5fa702e776dbe986465bd", size = 278330 },
{ url = "https://files.pythonhosted.org/packages/eb/d2/d41f8c04c783a4d204e364be2d38043d4f732a3bed6f4c732e321cf34c7b/cbor2-5.8.0-cp313-cp313-win_amd64.whl", hash = "sha256:c114af8099fa65a19a514db87ce7a06e942d8fea2730afd49be39f8e16e7f5e0", size = 69841 },
{ url = "https://files.pythonhosted.org/packages/1b/8c/0397a82f6e67665009951453c83058e4c77ba54b9a9017ede56d6870306c/cbor2-5.8.0-cp313-cp313-win_arm64.whl", hash = "sha256:ab3ba00494ad8669a459b12a558448d309c271fa4f89b116ad496ee35db38fea", size = 64982 },
{ url = "https://files.pythonhosted.org/packages/d6/4f/101071f880b4da05771128c0b89f41e334cff044dee05fb013c8f4be661c/cbor2-5.8.0-py3-none-any.whl", hash = "sha256:3727d80f539567b03a7aa11890e57798c67092c38df9e6c23abb059e0f65069c", size = 24374 },
]
[[package]]
@ -953,6 +949,7 @@ dependencies = [
{ name = "aiolimiter" },
{ name = "aiosqlite" },
{ name = "alembic" },
{ name = "cbor2" },
{ name = "diskcache" },
{ name = "fakeredis", extra = ["lua"] },
{ name = "fastapi" },
@ -1136,6 +1133,7 @@ requires-dist = [
{ name = "asyncpg", marker = "extra == 'postgres-binary'", specifier = ">=0.30.0,<1.0.0" },
{ name = "baml-py", marker = "extra == 'baml'", specifier = "==0.206.0" },
{ name = "beautifulsoup4", marker = "extra == 'scraping'", specifier = ">=4.13.1" },
{ name = "cbor2", specifier = ">=5.8.0" },
{ name = "chromadb", marker = "extra == 'chromadb'", specifier = ">=0.6,<0.7" },
{ name = "coverage", marker = "extra == 'dev'", specifier = ">=7.3.2,<8" },
{ name = "debugpy", marker = "extra == 'debug'", specifier = ">=1.8.9,<2.0.0" },