feat: adds cognee node and edge embeddings for graphiti graph

This commit is contained in:
hajdul88 2025-01-13 17:22:59 +01:00
parent a77a87e856
commit c351047c36
5 changed files with 109 additions and 3 deletions

View file

@ -51,6 +51,10 @@ class GraphDBInterface(Protocol):
):
raise NotImplementedError
@abstractmethod
async def get_model_independent_graph_data(self):
raise NotImplementedError
@abstractmethod
async def get_graph_data(self):
raise NotImplementedError

View file

@ -426,6 +426,15 @@ class Neo4jAdapter(GraphDBInterface):
return serialized_properties
async def get_model_independent_graph_data(self):
query_nodes = "MATCH (n) RETURN collect(n) AS nodes"
nodes = await self.query(query_nodes)
query_edges = "MATCH ()-[r]->() RETURN collect(r) AS relationships"
edges = await self.query(query_edges)
return (nodes, edges)
async def get_graph_data(self):
query = "MATCH (n) RETURN ID(n) AS id, labels(n) AS labels, properties(n) AS properties"

View file

@ -4,6 +4,77 @@ from collections import Counter
from cognee.infrastructure.databases.vector import get_vector_engine
from cognee.infrastructure.databases.graph import get_graph_engine
from cognee.modules.graph.models.EdgeType import EdgeType
from cognee.tasks.temporal_awareness.graphiti_model import GraphitiNode
async def index_graphiti_nodes_and_edges():
try:
created_indexes = {}
index_points = {}
vector_engine = get_vector_engine()
graph_engine = await get_graph_engine()
except Exception as e:
logging.error("Failed to initialize engines: %s", e)
raise RuntimeError("Initialization error") from e
nodes_data, edges_data = await graph_engine.get_model_independent_graph_data()
for node_data in nodes_data[0]["nodes"]:
graphiti_node = GraphitiNode(
**{key: node_data[key] for key in ("content", "name", "summary") if key in node_data}
)
data_point_type = type(graphiti_node)
for field_name in graphiti_node._metadata["index_fields"]:
index_name = f"{data_point_type.__tablename__}.{field_name}"
if index_name not in created_indexes:
await vector_engine.create_vector_index(data_point_type.__tablename__, field_name)
created_indexes[index_name] = True
if index_name not in index_points:
index_points[index_name] = []
if getattr(graphiti_node, field_name, None) is not None:
indexed_data_point = graphiti_node.model_copy()
indexed_data_point._metadata["index_fields"] = [field_name]
index_points[index_name].append(indexed_data_point)
for index_name, indexable_points in index_points.items():
index_name, field_name = index_name.split(".")
await vector_engine.index_data_points(index_name, field_name, indexable_points)
edge_types = Counter(
edge[1]
for edge in edges_data[0]["relationships"]
if isinstance(edge, tuple) and len(edge) == 3
)
for text, count in edge_types.items():
edge = EdgeType(relationship_name=text, number_of_edges=count)
data_point_type = type(edge)
for field_name in edge._metadata["index_fields"]:
index_name = f"{data_point_type.__tablename__}.{field_name}"
if index_name not in created_indexes:
await vector_engine.create_vector_index(data_point_type.__tablename__, field_name)
created_indexes[index_name] = True
if index_name not in index_points:
index_points[index_name] = []
indexed_data_point = edge.model_copy()
indexed_data_point._metadata["index_fields"] = [field_name]
index_points[index_name].append(indexed_data_point)
for index_name, indexable_points in index_points.items():
index_name, field_name = index_name.split(".")
await vector_engine.index_data_points(index_name, field_name, indexable_points)
return None
async def index_graph_edges():

View file

@ -0,0 +1,12 @@
from cognee.infrastructure.engine import DataPoint
from typing import ClassVar, Optional
class GraphitiNode(DataPoint):
__tablename__ = "graphitinode"
content: Optional[str] = None
name: Optional[str] = None
summary: Optional[str] = None
pydantic_type: str = "GraphitiNode"
_metadata: dict = {"index_fields": ["name", "summary", "content"], "type": "GraphitiNode"}

View file

@ -7,6 +7,10 @@ from cognee.tasks.temporal_awareness import (
build_graph_with_temporal_awareness,
search_graph_with_temporal_awareness,
)
from cognee.infrastructure.databases.relational import (
create_db_and_tables as create_relational_db_and_tables,
)
from cognee.tasks.storage.index_graph_edges import index_graphiti_nodes_and_edges
text_list = [
"Kamala Harris is the Attorney General of California. She was previously "
@ -16,11 +20,15 @@ text_list = [
async def main():
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
await create_relational_db_and_tables()
for text in text_list:
await cognee.add(text)
tasks = [
Task(build_graph_with_temporal_awareness, text_list=text_list),
Task(
search_graph_with_temporal_awareness, query="Who was the California Attorney General?"
),
]
pipeline = run_tasks(tasks)
@ -28,6 +36,8 @@ async def main():
async for result in pipeline:
print(result)
await index_graphiti_nodes_and_edges()
if __name__ == "__main__":
asyncio.run(main())