Merge remote-tracking branch 'origin/dev' into fix-mcp-migrations

This commit is contained in:
Boris Arzentar 2025-12-15 17:20:20 +01:00
commit c230ce3858
No known key found for this signature in database
GPG key ID: D5CC274C784807B7
11 changed files with 180 additions and 16 deletions

154
.github/workflows/release.yml vendored Normal file
View file

@ -0,0 +1,154 @@
name: release.yml
on:
workflow_dispatch:
inputs:
flavour:
required: true
default: dev
type: choice
options:
- dev
- main
description: Dev or Main release
test_mode:
required: true
type: boolean
description: Aka Dry Run. If true, it won't affect public indices or repositories
jobs:
release-github:
name: Create GitHub Release from ${{ inputs.flavour }}
outputs:
tag: ${{ steps.create_tag.outputs.tag }}
version: ${{ steps.create_tag.outputs.version }}
permissions:
contents: write
runs-on: ubuntu-latest
steps:
- name: Check out ${{ inputs.flavour }}
uses: actions/checkout@v4
with:
ref: ${{ inputs.flavour }}
- name: Install uv
uses: astral-sh/setup-uv@v7
- name: Create and push git tag
id: create_tag
env:
TEST_MODE: ${{ inputs.test_mode }}
run: |
VERSION="$(uv version --short)"
TAG="v${VERSION}"
echo "Tag to create: ${TAG}"
git config user.name "github-actions[bot]"
git config user.email "41898282+github-actions[bot]@users.noreply.github.com"
echo "tag=${TAG}" >> "$GITHUB_OUTPUT"
echo "version=${VERSION}" >> "$GITHUB_OUTPUT"
if [ "$TEST_MODE" = "false" ]; then
git tag "${TAG}"
git push origin "${TAG}"
else
echo "Test mode is enabled. Skipping tag creation and push."
fi
- name: Create GitHub Release
uses: softprops/action-gh-release@v2
with:
tag_name: ${{ steps.create_tag.outputs.tag }}
generate_release_notes: true
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
release-pypi-package:
needs: release-github
name: Release PyPI Package from ${{ inputs.flavour }}
permissions:
contents: read
runs-on: ubuntu-latest
steps:
- name: Check out ${{ inputs.flavour }}
uses: actions/checkout@v4
with:
ref: ${{ inputs.flavour }}
- name: Install uv
uses: astral-sh/setup-uv@v7
- name: Install Python
run: uv python install
- name: Install dependencies
run: uv sync --locked --all-extras
- name: Build distributions
run: uv build
- name: Publish ${{ inputs.flavour }} release to TestPyPI
if: ${{ inputs.test_mode }}
env:
UV_PUBLISH_TOKEN: ${{ secrets.TEST_PYPI_TOKEN }}
run: uv publish --publish-url https://test.pypi.org/legacy/
- name: Publish ${{ inputs.flavour }} release to PyPI
if: ${{ !inputs.test_mode }}
env:
UV_PUBLISH_TOKEN: ${{ secrets.PYPI_TOKEN }}
run: uv publish
release-docker-image:
needs: release-github
name: Release Docker Image from ${{ inputs.flavour }}
permissions:
contents: read
runs-on: ubuntu-latest
steps:
- name: Check out ${{ inputs.flavour }}
uses: actions/checkout@v4
with:
ref: ${{ inputs.flavour }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Log in to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Build and push Dev Docker Image
if: ${{ inputs.flavour == 'dev' }}
uses: docker/build-push-action@v5
with:
context: .
platforms: linux/amd64,linux/arm64
push: ${{ !inputs.test_mode }}
tags: cognee/cognee:${{ needs.release-github.outputs.version }}
labels: |
version=${{ needs.release-github.outputs.version }}
flavour=${{ inputs.flavour }}
cache-from: type=registry,ref=cognee/cognee:buildcache
cache-to: type=registry,ref=cognee/cognee:buildcache,mode=max
- name: Build and push Main Docker Image
if: ${{ inputs.flavour == 'main' }}
uses: docker/build-push-action@v5
with:
context: .
platforms: linux/amd64,linux/arm64
push: ${{ !inputs.test_mode }}
tags: |
cognee/cognee:${{ needs.release-github.outputs.version }}
cognee/cognee:latest
labels: |
version=${{ needs.release-github.outputs.version }}
flavour=${{ inputs.flavour }}
cache-from: type=registry,ref=cognee/cognee:buildcache
cache-to: type=registry,ref=cognee/cognee:buildcache,mode=max

View file

@ -53,6 +53,7 @@ async def cognify(
custom_prompt: Optional[str] = None,
temporal_cognify: bool = False,
data_per_batch: int = 20,
**kwargs
):
"""
Transform ingested data into a structured knowledge graph.
@ -223,6 +224,7 @@ async def cognify(
config=config,
custom_prompt=custom_prompt,
chunks_per_batch=chunks_per_batch,
**kwargs,
)
# By calling get pipeline executor we get a function that will have the run_pipeline run in the background or a function that we will need to wait for
@ -251,6 +253,7 @@ async def get_default_tasks( # TODO: Find out a better way to do this (Boris's
config: Config = None,
custom_prompt: Optional[str] = None,
chunks_per_batch: int = 100,
**kwargs,
) -> list[Task]:
if config is None:
ontology_config = get_ontology_env_config()
@ -288,6 +291,7 @@ async def get_default_tasks( # TODO: Find out a better way to do this (Boris's
config=config,
custom_prompt=custom_prompt,
task_config={"batch_size": chunks_per_batch},
**kwargs,
), # Generate knowledge graphs from the document chunks.
Task(
summarize_text,

View file

@ -11,7 +11,7 @@ class LLMGateway:
@staticmethod
def acreate_structured_output(
text_input: str, system_prompt: str, response_model: Type[BaseModel]
text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
) -> Coroutine:
llm_config = get_llm_config()
if llm_config.structured_output_framework.upper() == "BAML":
@ -31,7 +31,7 @@ class LLMGateway:
llm_client = get_llm_client()
return llm_client.acreate_structured_output(
text_input=text_input, system_prompt=system_prompt, response_model=response_model
text_input=text_input, system_prompt=system_prompt, response_model=response_model, **kwargs
)
@staticmethod

View file

@ -10,7 +10,7 @@ from cognee.infrastructure.llm.config import (
async def extract_content_graph(
content: str, response_model: Type[BaseModel], custom_prompt: Optional[str] = None
content: str, response_model: Type[BaseModel], custom_prompt: Optional[str] = None, **kwargs
):
if custom_prompt:
system_prompt = custom_prompt
@ -30,7 +30,7 @@ async def extract_content_graph(
system_prompt = render_prompt(prompt_path, {}, base_directory=base_directory)
content_graph = await LLMGateway.acreate_structured_output(
content, system_prompt, response_model
content, system_prompt, response_model, **kwargs
)
return content_graph

View file

@ -52,7 +52,7 @@ class AnthropicAdapter(LLMInterface):
reraise=True,
)
async def acreate_structured_output(
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
) -> BaseModel:
"""
Generate a response from a user query.

View file

@ -80,7 +80,7 @@ class GeminiAdapter(LLMInterface):
reraise=True,
)
async def acreate_structured_output(
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
) -> BaseModel:
"""
Generate a response from a user query.

View file

@ -80,7 +80,7 @@ class GenericAPIAdapter(LLMInterface):
reraise=True,
)
async def acreate_structured_output(
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
) -> BaseModel:
"""
Generate a response from a user query.

View file

@ -69,7 +69,7 @@ class MistralAdapter(LLMInterface):
reraise=True,
)
async def acreate_structured_output(
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
) -> BaseModel:
"""
Generate a response from the user query.

View file

@ -76,7 +76,7 @@ class OllamaAPIAdapter(LLMInterface):
reraise=True,
)
async def acreate_structured_output(
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
) -> BaseModel:
"""
Generate a structured output from the LLM using the provided text and system prompt.
@ -123,7 +123,7 @@ class OllamaAPIAdapter(LLMInterface):
before_sleep=before_sleep_log(logger, logging.DEBUG),
reraise=True,
)
async def create_transcript(self, input_file: str) -> str:
async def create_transcript(self, input_file: str, **kwargs) -> str:
"""
Generate an audio transcript from a user query.
@ -162,7 +162,7 @@ class OllamaAPIAdapter(LLMInterface):
before_sleep=before_sleep_log(logger, logging.DEBUG),
reraise=True,
)
async def transcribe_image(self, input_file: str) -> str:
async def transcribe_image(self, input_file: str, **kwargs) -> str:
"""
Transcribe content from an image using base64 encoding.

View file

@ -112,7 +112,7 @@ class OpenAIAdapter(LLMInterface):
reraise=True,
)
async def acreate_structured_output(
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
) -> BaseModel:
"""
Generate a response from a user query.
@ -154,6 +154,7 @@ class OpenAIAdapter(LLMInterface):
api_version=self.api_version,
response_model=response_model,
max_retries=self.MAX_RETRIES,
**kwargs,
)
except (
ContentFilterFinishReasonError,
@ -180,6 +181,7 @@ class OpenAIAdapter(LLMInterface):
# api_base=self.fallback_endpoint,
response_model=response_model,
max_retries=self.MAX_RETRIES,
**kwargs,
)
except (
ContentFilterFinishReasonError,
@ -205,7 +207,7 @@ class OpenAIAdapter(LLMInterface):
reraise=True,
)
def create_structured_output(
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
) -> BaseModel:
"""
Generate a response from a user query.
@ -245,6 +247,7 @@ class OpenAIAdapter(LLMInterface):
api_version=self.api_version,
response_model=response_model,
max_retries=self.MAX_RETRIES,
**kwargs,
)
@retry(
@ -254,7 +257,7 @@ class OpenAIAdapter(LLMInterface):
before_sleep=before_sleep_log(logger, logging.DEBUG),
reraise=True,
)
async def create_transcript(self, input):
async def create_transcript(self, input, **kwargs):
"""
Generate an audio transcript from a user query.
@ -281,6 +284,7 @@ class OpenAIAdapter(LLMInterface):
api_base=self.endpoint,
api_version=self.api_version,
max_retries=self.MAX_RETRIES,
**kwargs,
)
return transcription
@ -292,7 +296,7 @@ class OpenAIAdapter(LLMInterface):
before_sleep=before_sleep_log(logger, logging.DEBUG),
reraise=True,
)
async def transcribe_image(self, input) -> BaseModel:
async def transcribe_image(self, input, **kwargs) -> BaseModel:
"""
Generate a transcription of an image from a user query.
@ -337,4 +341,5 @@ class OpenAIAdapter(LLMInterface):
api_version=self.api_version,
max_completion_tokens=300,
max_retries=self.MAX_RETRIES,
**kwargs,
)

View file

@ -97,6 +97,7 @@ async def extract_graph_from_data(
graph_model: Type[BaseModel],
config: Config = None,
custom_prompt: Optional[str] = None,
**kwargs,
) -> List[DocumentChunk]:
"""
Extracts and integrates a knowledge graph from the text content of document chunks using a specified graph model.
@ -111,7 +112,7 @@ async def extract_graph_from_data(
chunk_graphs = await asyncio.gather(
*[
extract_content_graph(chunk.text, graph_model, custom_prompt=custom_prompt)
extract_content_graph(chunk.text, graph_model, custom_prompt=custom_prompt, **kwargs)
for chunk in data_chunks
]
)