Merge remote-tracking branch 'origin/dev' into fix-mcp-migrations
This commit is contained in:
commit
c230ce3858
11 changed files with 180 additions and 16 deletions
154
.github/workflows/release.yml
vendored
Normal file
154
.github/workflows/release.yml
vendored
Normal file
|
|
@ -0,0 +1,154 @@
|
|||
name: release.yml
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
flavour:
|
||||
required: true
|
||||
default: dev
|
||||
type: choice
|
||||
options:
|
||||
- dev
|
||||
- main
|
||||
description: Dev or Main release
|
||||
test_mode:
|
||||
required: true
|
||||
type: boolean
|
||||
description: Aka Dry Run. If true, it won't affect public indices or repositories
|
||||
|
||||
jobs:
|
||||
release-github:
|
||||
name: Create GitHub Release from ${{ inputs.flavour }}
|
||||
outputs:
|
||||
tag: ${{ steps.create_tag.outputs.tag }}
|
||||
version: ${{ steps.create_tag.outputs.version }}
|
||||
permissions:
|
||||
contents: write
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Check out ${{ inputs.flavour }}
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ inputs.flavour }}
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v7
|
||||
|
||||
- name: Create and push git tag
|
||||
id: create_tag
|
||||
env:
|
||||
TEST_MODE: ${{ inputs.test_mode }}
|
||||
run: |
|
||||
VERSION="$(uv version --short)"
|
||||
TAG="v${VERSION}"
|
||||
|
||||
echo "Tag to create: ${TAG}"
|
||||
|
||||
git config user.name "github-actions[bot]"
|
||||
git config user.email "41898282+github-actions[bot]@users.noreply.github.com"
|
||||
|
||||
echo "tag=${TAG}" >> "$GITHUB_OUTPUT"
|
||||
echo "version=${VERSION}" >> "$GITHUB_OUTPUT"
|
||||
|
||||
if [ "$TEST_MODE" = "false" ]; then
|
||||
git tag "${TAG}"
|
||||
git push origin "${TAG}"
|
||||
else
|
||||
echo "Test mode is enabled. Skipping tag creation and push."
|
||||
fi
|
||||
|
||||
- name: Create GitHub Release
|
||||
uses: softprops/action-gh-release@v2
|
||||
with:
|
||||
tag_name: ${{ steps.create_tag.outputs.tag }}
|
||||
generate_release_notes: true
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
release-pypi-package:
|
||||
needs: release-github
|
||||
name: Release PyPI Package from ${{ inputs.flavour }}
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Check out ${{ inputs.flavour }}
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ inputs.flavour }}
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v7
|
||||
|
||||
- name: Install Python
|
||||
run: uv python install
|
||||
|
||||
- name: Install dependencies
|
||||
run: uv sync --locked --all-extras
|
||||
|
||||
- name: Build distributions
|
||||
run: uv build
|
||||
|
||||
- name: Publish ${{ inputs.flavour }} release to TestPyPI
|
||||
if: ${{ inputs.test_mode }}
|
||||
env:
|
||||
UV_PUBLISH_TOKEN: ${{ secrets.TEST_PYPI_TOKEN }}
|
||||
run: uv publish --publish-url https://test.pypi.org/legacy/
|
||||
|
||||
- name: Publish ${{ inputs.flavour }} release to PyPI
|
||||
if: ${{ !inputs.test_mode }}
|
||||
env:
|
||||
UV_PUBLISH_TOKEN: ${{ secrets.PYPI_TOKEN }}
|
||||
run: uv publish
|
||||
|
||||
release-docker-image:
|
||||
needs: release-github
|
||||
name: Release Docker Image from ${{ inputs.flavour }}
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Check out ${{ inputs.flavour }}
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ inputs.flavour }}
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Log in to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_PASSWORD }}
|
||||
|
||||
- name: Build and push Dev Docker Image
|
||||
if: ${{ inputs.flavour == 'dev' }}
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: .
|
||||
platforms: linux/amd64,linux/arm64
|
||||
push: ${{ !inputs.test_mode }}
|
||||
tags: cognee/cognee:${{ needs.release-github.outputs.version }}
|
||||
labels: |
|
||||
version=${{ needs.release-github.outputs.version }}
|
||||
flavour=${{ inputs.flavour }}
|
||||
cache-from: type=registry,ref=cognee/cognee:buildcache
|
||||
cache-to: type=registry,ref=cognee/cognee:buildcache,mode=max
|
||||
|
||||
- name: Build and push Main Docker Image
|
||||
if: ${{ inputs.flavour == 'main' }}
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: .
|
||||
platforms: linux/amd64,linux/arm64
|
||||
push: ${{ !inputs.test_mode }}
|
||||
tags: |
|
||||
cognee/cognee:${{ needs.release-github.outputs.version }}
|
||||
cognee/cognee:latest
|
||||
labels: |
|
||||
version=${{ needs.release-github.outputs.version }}
|
||||
flavour=${{ inputs.flavour }}
|
||||
cache-from: type=registry,ref=cognee/cognee:buildcache
|
||||
cache-to: type=registry,ref=cognee/cognee:buildcache,mode=max
|
||||
|
|
@ -53,6 +53,7 @@ async def cognify(
|
|||
custom_prompt: Optional[str] = None,
|
||||
temporal_cognify: bool = False,
|
||||
data_per_batch: int = 20,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Transform ingested data into a structured knowledge graph.
|
||||
|
|
@ -223,6 +224,7 @@ async def cognify(
|
|||
config=config,
|
||||
custom_prompt=custom_prompt,
|
||||
chunks_per_batch=chunks_per_batch,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# By calling get pipeline executor we get a function that will have the run_pipeline run in the background or a function that we will need to wait for
|
||||
|
|
@ -251,6 +253,7 @@ async def get_default_tasks( # TODO: Find out a better way to do this (Boris's
|
|||
config: Config = None,
|
||||
custom_prompt: Optional[str] = None,
|
||||
chunks_per_batch: int = 100,
|
||||
**kwargs,
|
||||
) -> list[Task]:
|
||||
if config is None:
|
||||
ontology_config = get_ontology_env_config()
|
||||
|
|
@ -288,6 +291,7 @@ async def get_default_tasks( # TODO: Find out a better way to do this (Boris's
|
|||
config=config,
|
||||
custom_prompt=custom_prompt,
|
||||
task_config={"batch_size": chunks_per_batch},
|
||||
**kwargs,
|
||||
), # Generate knowledge graphs from the document chunks.
|
||||
Task(
|
||||
summarize_text,
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ class LLMGateway:
|
|||
|
||||
@staticmethod
|
||||
def acreate_structured_output(
|
||||
text_input: str, system_prompt: str, response_model: Type[BaseModel]
|
||||
text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
|
||||
) -> Coroutine:
|
||||
llm_config = get_llm_config()
|
||||
if llm_config.structured_output_framework.upper() == "BAML":
|
||||
|
|
@ -31,7 +31,7 @@ class LLMGateway:
|
|||
|
||||
llm_client = get_llm_client()
|
||||
return llm_client.acreate_structured_output(
|
||||
text_input=text_input, system_prompt=system_prompt, response_model=response_model
|
||||
text_input=text_input, system_prompt=system_prompt, response_model=response_model, **kwargs
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ from cognee.infrastructure.llm.config import (
|
|||
|
||||
|
||||
async def extract_content_graph(
|
||||
content: str, response_model: Type[BaseModel], custom_prompt: Optional[str] = None
|
||||
content: str, response_model: Type[BaseModel], custom_prompt: Optional[str] = None, **kwargs
|
||||
):
|
||||
if custom_prompt:
|
||||
system_prompt = custom_prompt
|
||||
|
|
@ -30,7 +30,7 @@ async def extract_content_graph(
|
|||
system_prompt = render_prompt(prompt_path, {}, base_directory=base_directory)
|
||||
|
||||
content_graph = await LLMGateway.acreate_structured_output(
|
||||
content, system_prompt, response_model
|
||||
content, system_prompt, response_model, **kwargs
|
||||
)
|
||||
|
||||
return content_graph
|
||||
|
|
|
|||
|
|
@ -52,7 +52,7 @@ class AnthropicAdapter(LLMInterface):
|
|||
reraise=True,
|
||||
)
|
||||
async def acreate_structured_output(
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
|
||||
) -> BaseModel:
|
||||
"""
|
||||
Generate a response from a user query.
|
||||
|
|
|
|||
|
|
@ -80,7 +80,7 @@ class GeminiAdapter(LLMInterface):
|
|||
reraise=True,
|
||||
)
|
||||
async def acreate_structured_output(
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
|
||||
) -> BaseModel:
|
||||
"""
|
||||
Generate a response from a user query.
|
||||
|
|
|
|||
|
|
@ -80,7 +80,7 @@ class GenericAPIAdapter(LLMInterface):
|
|||
reraise=True,
|
||||
)
|
||||
async def acreate_structured_output(
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
|
||||
) -> BaseModel:
|
||||
"""
|
||||
Generate a response from a user query.
|
||||
|
|
|
|||
|
|
@ -69,7 +69,7 @@ class MistralAdapter(LLMInterface):
|
|||
reraise=True,
|
||||
)
|
||||
async def acreate_structured_output(
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
|
||||
) -> BaseModel:
|
||||
"""
|
||||
Generate a response from the user query.
|
||||
|
|
|
|||
|
|
@ -76,7 +76,7 @@ class OllamaAPIAdapter(LLMInterface):
|
|||
reraise=True,
|
||||
)
|
||||
async def acreate_structured_output(
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
|
||||
) -> BaseModel:
|
||||
"""
|
||||
Generate a structured output from the LLM using the provided text and system prompt.
|
||||
|
|
@ -123,7 +123,7 @@ class OllamaAPIAdapter(LLMInterface):
|
|||
before_sleep=before_sleep_log(logger, logging.DEBUG),
|
||||
reraise=True,
|
||||
)
|
||||
async def create_transcript(self, input_file: str) -> str:
|
||||
async def create_transcript(self, input_file: str, **kwargs) -> str:
|
||||
"""
|
||||
Generate an audio transcript from a user query.
|
||||
|
||||
|
|
@ -162,7 +162,7 @@ class OllamaAPIAdapter(LLMInterface):
|
|||
before_sleep=before_sleep_log(logger, logging.DEBUG),
|
||||
reraise=True,
|
||||
)
|
||||
async def transcribe_image(self, input_file: str) -> str:
|
||||
async def transcribe_image(self, input_file: str, **kwargs) -> str:
|
||||
"""
|
||||
Transcribe content from an image using base64 encoding.
|
||||
|
||||
|
|
|
|||
|
|
@ -112,7 +112,7 @@ class OpenAIAdapter(LLMInterface):
|
|||
reraise=True,
|
||||
)
|
||||
async def acreate_structured_output(
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
|
||||
) -> BaseModel:
|
||||
"""
|
||||
Generate a response from a user query.
|
||||
|
|
@ -154,6 +154,7 @@ class OpenAIAdapter(LLMInterface):
|
|||
api_version=self.api_version,
|
||||
response_model=response_model,
|
||||
max_retries=self.MAX_RETRIES,
|
||||
**kwargs,
|
||||
)
|
||||
except (
|
||||
ContentFilterFinishReasonError,
|
||||
|
|
@ -180,6 +181,7 @@ class OpenAIAdapter(LLMInterface):
|
|||
# api_base=self.fallback_endpoint,
|
||||
response_model=response_model,
|
||||
max_retries=self.MAX_RETRIES,
|
||||
**kwargs,
|
||||
)
|
||||
except (
|
||||
ContentFilterFinishReasonError,
|
||||
|
|
@ -205,7 +207,7 @@ class OpenAIAdapter(LLMInterface):
|
|||
reraise=True,
|
||||
)
|
||||
def create_structured_output(
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel]
|
||||
self, text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
|
||||
) -> BaseModel:
|
||||
"""
|
||||
Generate a response from a user query.
|
||||
|
|
@ -245,6 +247,7 @@ class OpenAIAdapter(LLMInterface):
|
|||
api_version=self.api_version,
|
||||
response_model=response_model,
|
||||
max_retries=self.MAX_RETRIES,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@retry(
|
||||
|
|
@ -254,7 +257,7 @@ class OpenAIAdapter(LLMInterface):
|
|||
before_sleep=before_sleep_log(logger, logging.DEBUG),
|
||||
reraise=True,
|
||||
)
|
||||
async def create_transcript(self, input):
|
||||
async def create_transcript(self, input, **kwargs):
|
||||
"""
|
||||
Generate an audio transcript from a user query.
|
||||
|
||||
|
|
@ -281,6 +284,7 @@ class OpenAIAdapter(LLMInterface):
|
|||
api_base=self.endpoint,
|
||||
api_version=self.api_version,
|
||||
max_retries=self.MAX_RETRIES,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return transcription
|
||||
|
|
@ -292,7 +296,7 @@ class OpenAIAdapter(LLMInterface):
|
|||
before_sleep=before_sleep_log(logger, logging.DEBUG),
|
||||
reraise=True,
|
||||
)
|
||||
async def transcribe_image(self, input) -> BaseModel:
|
||||
async def transcribe_image(self, input, **kwargs) -> BaseModel:
|
||||
"""
|
||||
Generate a transcription of an image from a user query.
|
||||
|
||||
|
|
@ -337,4 +341,5 @@ class OpenAIAdapter(LLMInterface):
|
|||
api_version=self.api_version,
|
||||
max_completion_tokens=300,
|
||||
max_retries=self.MAX_RETRIES,
|
||||
**kwargs,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -97,6 +97,7 @@ async def extract_graph_from_data(
|
|||
graph_model: Type[BaseModel],
|
||||
config: Config = None,
|
||||
custom_prompt: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> List[DocumentChunk]:
|
||||
"""
|
||||
Extracts and integrates a knowledge graph from the text content of document chunks using a specified graph model.
|
||||
|
|
@ -111,7 +112,7 @@ async def extract_graph_from_data(
|
|||
|
||||
chunk_graphs = await asyncio.gather(
|
||||
*[
|
||||
extract_content_graph(chunk.text, graph_model, custom_prompt=custom_prompt)
|
||||
extract_content_graph(chunk.text, graph_model, custom_prompt=custom_prompt, **kwargs)
|
||||
for chunk in data_chunks
|
||||
]
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue