feat: implements graph edge indexing
This commit is contained in:
parent
46ee513f6c
commit
c20ee11e80
3 changed files with 84 additions and 0 deletions
|
|
@ -18,6 +18,7 @@ from cognee.modules.pipelines.operations.log_pipeline_status import log_pipeline
|
|||
from cognee.tasks.documents import classify_documents, check_permissions_on_documents, extract_chunks_from_documents
|
||||
from cognee.tasks.graph import extract_graph_from_data
|
||||
from cognee.tasks.storage import add_data_points
|
||||
from cognee.tasks.storage.index_graph_edges import index_graph_edges
|
||||
from cognee.tasks.summarization import summarize_text
|
||||
|
||||
logger = logging.getLogger("cognify.v2")
|
||||
|
|
@ -94,6 +95,8 @@ async def run_cognify_pipeline(dataset: Dataset, user: User):
|
|||
async for result in pipeline:
|
||||
print(result)
|
||||
|
||||
await index_graph_edges()
|
||||
|
||||
send_telemetry("cognee.cognify EXECUTION COMPLETED", user.id)
|
||||
|
||||
await log_pipeline_status(dataset_id, PipelineRunStatus.DATASET_PROCESSING_COMPLETED, {
|
||||
|
|
|
|||
11
cognee/modules/graph/models/EdgeType.py
Normal file
11
cognee/modules/graph/models/EdgeType.py
Normal file
|
|
@ -0,0 +1,11 @@
|
|||
from typing import Optional
|
||||
from cognee.infrastructure.engine import DataPoint
|
||||
|
||||
class EdgeType(DataPoint):
|
||||
__tablename__ = "edge_type"
|
||||
relationship_name: str
|
||||
number_of_edges: int
|
||||
|
||||
_metadata: Optional[dict] = {
|
||||
"index_fields": ["relationship_name"],
|
||||
}
|
||||
70
cognee/tasks/storage/index_graph_edges.py
Normal file
70
cognee/tasks/storage/index_graph_edges.py
Normal file
|
|
@ -0,0 +1,70 @@
|
|||
import logging
|
||||
from collections import Counter
|
||||
|
||||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.modules.graph.models.EdgeType import EdgeType
|
||||
|
||||
|
||||
async def index_graph_edges():
|
||||
"""
|
||||
Indexes graph edges by creating and managing vector indexes for relationship types.
|
||||
|
||||
This function retrieves edge data from the graph engine, counts distinct relationship
|
||||
types, and creates `EdgeType` pydantic objects. It ensures that vector indexes are created for
|
||||
the `relationship_name` field.
|
||||
|
||||
Steps:
|
||||
1. Initialize the vector engine and graph engine.
|
||||
2. Retrieve graph edge data and count relationship types (`relationship_name`).
|
||||
3. Create vector indexes for `relationship_name` if they don't exist.
|
||||
4. Transform the counted relationships into `EdgeType` objects.
|
||||
5. Index the transformed data points in the vector engine.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If initialization of the vector engine or graph engine fails.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
try:
|
||||
created_indexes = {}
|
||||
index_points = {}
|
||||
|
||||
vector_engine = get_vector_engine()
|
||||
graph_engine = await get_graph_engine()
|
||||
except Exception as e:
|
||||
logging.error("Failed to initialize engines: %s", e)
|
||||
raise RuntimeError("Initialization error") from e
|
||||
|
||||
_, edges_data = await graph_engine.get_graph_data()
|
||||
|
||||
edge_types = Counter(
|
||||
item.get('relationship_name')
|
||||
for edge in edges_data
|
||||
for item in edge if isinstance(item, dict) and 'relationship_name' in item
|
||||
)
|
||||
|
||||
for text, count in edge_types.items():
|
||||
edge = EdgeType(relationship_name=text, number_of_edges=count)
|
||||
data_point_type = type(edge)
|
||||
|
||||
for field_name in edge._metadata["index_fields"]:
|
||||
index_name = f"{data_point_type.__tablename__}.{field_name}"
|
||||
|
||||
if index_name not in created_indexes:
|
||||
await vector_engine.create_vector_index(data_point_type.__tablename__, field_name)
|
||||
created_indexes[index_name] = True
|
||||
|
||||
if index_name not in index_points:
|
||||
index_points[index_name] = []
|
||||
|
||||
indexed_data_point = edge.model_copy()
|
||||
indexed_data_point._metadata["index_fields"] = [field_name]
|
||||
index_points[index_name].append(indexed_data_point)
|
||||
|
||||
for index_name, indexable_points in index_points.items():
|
||||
index_name, field_name = index_name.split(".")
|
||||
await vector_engine.index_data_points(index_name, field_name, indexable_points)
|
||||
|
||||
return None
|
||||
Loading…
Add table
Reference in a new issue