Feature/cog 537 implement retrieval algorithm from research paper (#8)
This commit is contained in:
commit
be6eebfbb1
19 changed files with 547 additions and 75 deletions
|
|
@ -2,7 +2,7 @@
|
|||
import logging
|
||||
import asyncio
|
||||
from textwrap import dedent
|
||||
from typing import Optional, Any, List, Dict
|
||||
from typing import Optional, Any, List, Dict, Union
|
||||
from contextlib import asynccontextmanager
|
||||
from uuid import UUID
|
||||
from neo4j import AsyncSession
|
||||
|
|
@ -432,3 +432,49 @@ class Neo4jAdapter(GraphDBInterface):
|
|||
) for record in result]
|
||||
|
||||
return (nodes, edges)
|
||||
|
||||
async def get_filtered_graph_data(self, attribute_filters):
|
||||
"""
|
||||
Fetches nodes and relationships filtered by specified attribute values.
|
||||
|
||||
Args:
|
||||
attribute_filters (list of dict): A list of dictionaries where keys are attributes and values are lists of values to filter on.
|
||||
Example: [{"community": ["1", "2"]}]
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing two lists: nodes and edges.
|
||||
"""
|
||||
where_clauses = []
|
||||
for attribute, values in attribute_filters[0].items():
|
||||
values_str = ", ".join(f"'{value}'" if isinstance(value, str) else str(value) for value in values)
|
||||
where_clauses.append(f"n.{attribute} IN [{values_str}]")
|
||||
|
||||
where_clause = " AND ".join(where_clauses)
|
||||
|
||||
query_nodes = f"""
|
||||
MATCH (n)
|
||||
WHERE {where_clause}
|
||||
RETURN ID(n) AS id, labels(n) AS labels, properties(n) AS properties
|
||||
"""
|
||||
result_nodes = await self.query(query_nodes)
|
||||
|
||||
nodes = [(
|
||||
record["id"],
|
||||
record["properties"],
|
||||
) for record in result_nodes]
|
||||
|
||||
query_edges = f"""
|
||||
MATCH (n)-[r]->(m)
|
||||
WHERE {where_clause} AND {where_clause.replace('n.', 'm.')}
|
||||
RETURN ID(n) AS source, ID(m) AS target, TYPE(r) AS type, properties(r) AS properties
|
||||
"""
|
||||
result_edges = await self.query(query_edges)
|
||||
|
||||
edges = [(
|
||||
record["source"],
|
||||
record["target"],
|
||||
record["type"],
|
||||
record["properties"],
|
||||
) for record in result_edges]
|
||||
|
||||
return (nodes, edges)
|
||||
|
|
@ -6,7 +6,7 @@ import json
|
|||
import asyncio
|
||||
import logging
|
||||
from re import A
|
||||
from typing import Dict, Any, List
|
||||
from typing import Dict, Any, List, Union
|
||||
from uuid import UUID
|
||||
import aiofiles
|
||||
import aiofiles.os as aiofiles_os
|
||||
|
|
@ -301,3 +301,39 @@ class NetworkXAdapter(GraphDBInterface):
|
|||
logger.info("Graph deleted successfully.")
|
||||
except Exception as error:
|
||||
logger.error("Failed to delete graph: %s", error)
|
||||
|
||||
async def get_filtered_graph_data(self, attribute_filters: List[Dict[str, List[Union[str, int]]]]):
|
||||
"""
|
||||
Fetches nodes and relationships filtered by specified attribute values.
|
||||
|
||||
Args:
|
||||
attribute_filters (list of dict): A list of dictionaries where keys are attributes and values are lists of values to filter on.
|
||||
Example: [{"community": ["1", "2"]}]
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing two lists:
|
||||
- Nodes: List of tuples (node_id, node_properties).
|
||||
- Edges: List of tuples (source_id, target_id, relationship_type, edge_properties).
|
||||
"""
|
||||
# Create filters for nodes based on the attribute filters
|
||||
where_clauses = []
|
||||
for attribute, values in attribute_filters[0].items():
|
||||
where_clauses.append((attribute, values))
|
||||
|
||||
# Filter nodes
|
||||
filtered_nodes = [
|
||||
(node, data) for node, data in self.graph.nodes(data=True)
|
||||
if all(data.get(attr) in values for attr, values in where_clauses)
|
||||
]
|
||||
|
||||
# Filter edges where both source and target nodes satisfy the filters
|
||||
filtered_edges = [
|
||||
(source, target, data.get('relationship_type', 'UNKNOWN'), data)
|
||||
for source, target, data in self.graph.edges(data=True)
|
||||
if (
|
||||
all(self.graph.nodes[source].get(attr) in values for attr, values in where_clauses) and
|
||||
all(self.graph.nodes[target].get(attr) in values for attr, values in where_clauses)
|
||||
)
|
||||
]
|
||||
|
||||
return filtered_nodes, filtered_edges
|
||||
|
|
@ -10,6 +10,7 @@ from cognee.infrastructure.files.storage import LocalStorage
|
|||
from cognee.modules.storage.utils import copy_model, get_own_properties
|
||||
from ..models.ScoredResult import ScoredResult
|
||||
from ..vector_db_interface import VectorDBInterface
|
||||
from ..utils import normalize_distances
|
||||
from ..embeddings.EmbeddingEngine import EmbeddingEngine
|
||||
|
||||
class IndexSchema(DataPoint):
|
||||
|
|
@ -141,6 +142,33 @@ class LanceDBAdapter(VectorDBInterface):
|
|||
score = 0,
|
||||
) for result in results.to_dict("index").values()]
|
||||
|
||||
async def get_distance_from_collection_elements(
|
||||
self,
|
||||
collection_name: str,
|
||||
query_text: str = None,
|
||||
query_vector: List[float] = None
|
||||
):
|
||||
if query_text is None and query_vector is None:
|
||||
raise ValueError("One of query_text or query_vector must be provided!")
|
||||
|
||||
if query_text and not query_vector:
|
||||
query_vector = (await self.embedding_engine.embed_text([query_text]))[0]
|
||||
|
||||
connection = await self.get_connection()
|
||||
collection = await connection.open_table(collection_name)
|
||||
|
||||
results = await collection.vector_search(query_vector).to_pandas()
|
||||
|
||||
result_values = list(results.to_dict("index").values())
|
||||
|
||||
normalized_values = normalize_distances(result_values)
|
||||
|
||||
return [ScoredResult(
|
||||
id=UUID(result["id"]),
|
||||
payload=result["payload"],
|
||||
score=normalized_values[value_index],
|
||||
) for value_index, result in enumerate(result_values)]
|
||||
|
||||
async def search(
|
||||
self,
|
||||
collection_name: str,
|
||||
|
|
@ -148,6 +176,7 @@ class LanceDBAdapter(VectorDBInterface):
|
|||
query_vector: List[float] = None,
|
||||
limit: int = 5,
|
||||
with_vector: bool = False,
|
||||
normalized: bool = True
|
||||
):
|
||||
if query_text is None and query_vector is None:
|
||||
raise ValueError("One of query_text or query_vector must be provided!")
|
||||
|
|
@ -162,26 +191,7 @@ class LanceDBAdapter(VectorDBInterface):
|
|||
|
||||
result_values = list(results.to_dict("index").values())
|
||||
|
||||
min_value = 100
|
||||
max_value = 0
|
||||
|
||||
for result in result_values:
|
||||
value = float(result["_distance"])
|
||||
if value > max_value:
|
||||
max_value = value
|
||||
if value < min_value:
|
||||
min_value = value
|
||||
|
||||
normalized_values = []
|
||||
min_value = min(result["_distance"] for result in result_values)
|
||||
max_value = max(result["_distance"] for result in result_values)
|
||||
|
||||
if max_value == min_value:
|
||||
# Avoid division by zero: Assign all normalized values to 0 (or any constant value like 1)
|
||||
normalized_values = [0 for _ in result_values]
|
||||
else:
|
||||
normalized_values = [(result["_distance"] - min_value) / (max_value - min_value) for result in
|
||||
result_values]
|
||||
normalized_values = normalize_distances(result_values)
|
||||
|
||||
return [ScoredResult(
|
||||
id = UUID(result["id"]),
|
||||
|
|
|
|||
|
|
@ -11,6 +11,7 @@ from cognee.infrastructure.engine import DataPoint
|
|||
from .serialize_data import serialize_data
|
||||
from ..models.ScoredResult import ScoredResult
|
||||
from ..vector_db_interface import VectorDBInterface
|
||||
from ..utils import normalize_distances
|
||||
from ..embeddings.EmbeddingEngine import EmbeddingEngine
|
||||
from ...relational.sqlalchemy.SqlAlchemyAdapter import SQLAlchemyAdapter
|
||||
from ...relational.ModelBase import Base
|
||||
|
|
@ -22,6 +23,19 @@ class IndexSchema(DataPoint):
|
|||
"index_fields": ["text"]
|
||||
}
|
||||
|
||||
def singleton(class_):
|
||||
# Note: Using this singleton as a decorator to a class removes
|
||||
# the option to use class methods for that class
|
||||
instances = {}
|
||||
|
||||
def getinstance(*args, **kwargs):
|
||||
if class_ not in instances:
|
||||
instances[class_] = class_(*args, **kwargs)
|
||||
return instances[class_]
|
||||
|
||||
return getinstance
|
||||
|
||||
@singleton
|
||||
class PGVectorAdapter(SQLAlchemyAdapter, VectorDBInterface):
|
||||
|
||||
def __init__(
|
||||
|
|
@ -162,6 +176,51 @@ class PGVectorAdapter(SQLAlchemyAdapter, VectorDBInterface):
|
|||
) for result in results
|
||||
]
|
||||
|
||||
async def get_distance_from_collection_elements(
|
||||
self,
|
||||
collection_name: str,
|
||||
query_text: str = None,
|
||||
query_vector: List[float] = None,
|
||||
with_vector: bool = False
|
||||
)-> List[ScoredResult]:
|
||||
if query_text is None and query_vector is None:
|
||||
raise ValueError("One of query_text or query_vector must be provided!")
|
||||
|
||||
if query_text and not query_vector:
|
||||
query_vector = (await self.embedding_engine.embed_text([query_text]))[0]
|
||||
|
||||
# Get PGVectorDataPoint Table from database
|
||||
PGVectorDataPoint = await self.get_table(collection_name)
|
||||
|
||||
# Use async session to connect to the database
|
||||
async with self.get_async_session() as session:
|
||||
# Find closest vectors to query_vector
|
||||
closest_items = await session.execute(
|
||||
select(
|
||||
PGVectorDataPoint,
|
||||
PGVectorDataPoint.c.vector.cosine_distance(query_vector).label(
|
||||
"similarity"
|
||||
),
|
||||
)
|
||||
.order_by("similarity")
|
||||
)
|
||||
|
||||
vector_list = []
|
||||
|
||||
# Extract distances and find min/max for normalization
|
||||
for vector in closest_items:
|
||||
# TODO: Add normalization of similarity score
|
||||
vector_list.append(vector)
|
||||
|
||||
# Create and return ScoredResult objects
|
||||
return [
|
||||
ScoredResult(
|
||||
id = UUID(str(row.id)),
|
||||
payload = row.payload,
|
||||
score = row.similarity
|
||||
) for row in vector_list
|
||||
]
|
||||
|
||||
async def search(
|
||||
self,
|
||||
collection_name: str,
|
||||
|
|
|
|||
|
|
@ -142,6 +142,41 @@ class QDrantAdapter(VectorDBInterface):
|
|||
await client.close()
|
||||
return results
|
||||
|
||||
async def get_distance_from_collection_elements(
|
||||
self,
|
||||
collection_name: str,
|
||||
query_text: str = None,
|
||||
query_vector: List[float] = None,
|
||||
with_vector: bool = False
|
||||
) -> List[ScoredResult]:
|
||||
|
||||
if query_text is None and query_vector is None:
|
||||
raise ValueError("One of query_text or query_vector must be provided!")
|
||||
|
||||
client = self.get_qdrant_client()
|
||||
|
||||
results = await client.search(
|
||||
collection_name = collection_name,
|
||||
query_vector = models.NamedVector(
|
||||
name = "text",
|
||||
vector = query_vector if query_vector is not None else (await self.embed_data([query_text]))[0],
|
||||
),
|
||||
with_vectors = with_vector
|
||||
)
|
||||
|
||||
await client.close()
|
||||
|
||||
return [
|
||||
ScoredResult(
|
||||
id = UUID(result.id),
|
||||
payload = {
|
||||
**result.payload,
|
||||
"id": UUID(result.id),
|
||||
},
|
||||
score = 1 - result.score,
|
||||
) for result in results
|
||||
]
|
||||
|
||||
async def search(
|
||||
self,
|
||||
collection_name: str,
|
||||
|
|
|
|||
16
cognee/infrastructure/databases/vector/utils.py
Normal file
16
cognee/infrastructure/databases/vector/utils.py
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
from typing import List
|
||||
|
||||
|
||||
def normalize_distances(result_values: List[dict]) -> List[float]:
|
||||
|
||||
min_value = min(result["_distance"] for result in result_values)
|
||||
max_value = max(result["_distance"] for result in result_values)
|
||||
|
||||
if max_value == min_value:
|
||||
# Avoid division by zero: Assign all normalized values to 0 (or any constant value like 1)
|
||||
normalized_values = [0 for _ in result_values]
|
||||
else:
|
||||
normalized_values = [(result["_distance"] - min_value) / (max_value - min_value) for result in
|
||||
result_values]
|
||||
|
||||
return normalized_values
|
||||
|
|
@ -153,6 +153,36 @@ class WeaviateAdapter(VectorDBInterface):
|
|||
|
||||
return await future
|
||||
|
||||
async def get_distance_from_collection_elements(
|
||||
self,
|
||||
collection_name: str,
|
||||
query_text: str = None,
|
||||
query_vector: List[float] = None,
|
||||
with_vector: bool = False
|
||||
) -> List[ScoredResult]:
|
||||
import weaviate.classes as wvc
|
||||
|
||||
if query_text is None and query_vector is None:
|
||||
raise ValueError("One of query_text or query_vector must be provided!")
|
||||
|
||||
if query_vector is None:
|
||||
query_vector = (await self.embed_data([query_text]))[0]
|
||||
|
||||
search_result = self.get_collection(collection_name).query.hybrid(
|
||||
query=None,
|
||||
vector=query_vector,
|
||||
include_vector=with_vector,
|
||||
return_metadata=wvc.query.MetadataQuery(score=True),
|
||||
)
|
||||
|
||||
return [
|
||||
ScoredResult(
|
||||
id=UUID(str(result.uuid)),
|
||||
payload=result.properties,
|
||||
score=1 - float(result.metadata.score)
|
||||
) for result in search_result.objects
|
||||
]
|
||||
|
||||
async def search(
|
||||
self,
|
||||
collection_name: str,
|
||||
|
|
|
|||
|
|
@ -1,9 +1,12 @@
|
|||
from typing import List, Dict, Union
|
||||
import numpy as np
|
||||
|
||||
from typing import List, Dict, Union
|
||||
from cognee.infrastructure.databases.graph.graph_db_interface import GraphDBInterface
|
||||
from cognee.modules.graph.cognee_graph.CogneeGraphElements import Node, Edge
|
||||
from cognee.modules.graph.cognee_graph.CogneeAbstractGraph import CogneeAbstractGraph
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
import heapq
|
||||
from graphistry import edges
|
||||
|
||||
|
||||
class CogneeGraph(CogneeAbstractGraph):
|
||||
"""
|
||||
|
|
@ -39,26 +42,33 @@ class CogneeGraph(CogneeAbstractGraph):
|
|||
def get_node(self, node_id: str) -> Node:
|
||||
return self.nodes.get(node_id, None)
|
||||
|
||||
def get_edges(self, node_id: str) -> List[Edge]:
|
||||
def get_edges_from_node(self, node_id: str) -> List[Edge]:
|
||||
node = self.get_node(node_id)
|
||||
if node:
|
||||
return node.skeleton_edges
|
||||
else:
|
||||
raise ValueError(f"Node with id {node_id} does not exist.")
|
||||
|
||||
def get_edges(self)-> List[Edge]:
|
||||
return self.edges
|
||||
|
||||
async def project_graph_from_db(self,
|
||||
adapter: Union[GraphDBInterface],
|
||||
node_properties_to_project: List[str],
|
||||
edge_properties_to_project: List[str],
|
||||
directed = True,
|
||||
node_dimension = 1,
|
||||
edge_dimension = 1) -> None:
|
||||
edge_dimension = 1,
|
||||
memory_fragment_filter = []) -> None:
|
||||
|
||||
if node_dimension < 1 or edge_dimension < 1:
|
||||
raise ValueError("Dimensions must be positive integers")
|
||||
|
||||
try:
|
||||
nodes_data, edges_data = await adapter.get_graph_data()
|
||||
if len(memory_fragment_filter) == 0:
|
||||
nodes_data, edges_data = await adapter.get_graph_data()
|
||||
else:
|
||||
nodes_data, edges_data = await adapter.get_filtered_graph_data(attribute_filters = memory_fragment_filter)
|
||||
|
||||
if not nodes_data:
|
||||
raise ValueError("No node data retrieved from the database.")
|
||||
|
|
@ -89,3 +99,81 @@ class CogneeGraph(CogneeAbstractGraph):
|
|||
print(f"Error projecting graph: {e}")
|
||||
except Exception as ex:
|
||||
print(f"Unexpected error: {ex}")
|
||||
|
||||
async def map_vector_distances_to_graph_nodes(self, node_distances) -> None:
|
||||
for category, scored_results in node_distances.items():
|
||||
for scored_result in scored_results:
|
||||
node_id = str(scored_result.id)
|
||||
score = scored_result.score
|
||||
node =self.get_node(node_id)
|
||||
if node:
|
||||
node.add_attribute("vector_distance", score)
|
||||
else:
|
||||
print(f"Node with id {node_id} not found in the graph.")
|
||||
|
||||
async def map_vector_distances_to_graph_edges(self, vector_engine, query) -> None: # :TODO: When we calculate edge embeddings in vector db change this similarly to node mapping
|
||||
try:
|
||||
# Step 1: Generate the query embedding
|
||||
query_vector = await vector_engine.embed_data([query])
|
||||
query_vector = query_vector[0]
|
||||
if query_vector is None or len(query_vector) == 0:
|
||||
raise ValueError("Failed to generate query embedding.")
|
||||
|
||||
# Step 2: Collect all unique relationship types
|
||||
unique_relationship_types = set()
|
||||
for edge in self.edges:
|
||||
relationship_type = edge.attributes.get('relationship_type')
|
||||
if relationship_type:
|
||||
unique_relationship_types.add(relationship_type)
|
||||
|
||||
# Step 3: Embed all unique relationship types
|
||||
unique_relationship_types = list(unique_relationship_types)
|
||||
relationship_type_embeddings = await vector_engine.embed_data(unique_relationship_types)
|
||||
|
||||
# Step 4: Map relationship types to their embeddings and calculate distances
|
||||
embedding_map = {}
|
||||
for relationship_type, embedding in zip(unique_relationship_types, relationship_type_embeddings):
|
||||
edge_vector = np.array(embedding)
|
||||
|
||||
# Calculate cosine similarity
|
||||
similarity = np.dot(query_vector, edge_vector) / (
|
||||
np.linalg.norm(query_vector) * np.linalg.norm(edge_vector)
|
||||
)
|
||||
distance = 1 - similarity
|
||||
|
||||
# Round the distance to 4 decimal places and store it
|
||||
embedding_map[relationship_type] = round(distance, 4)
|
||||
|
||||
# Step 4: Assign precomputed distances to edges
|
||||
for edge in self.edges:
|
||||
relationship_type = edge.attributes.get('relationship_type')
|
||||
if not relationship_type or relationship_type not in embedding_map:
|
||||
print(f"Edge {edge} has an unknown or missing relationship type.")
|
||||
continue
|
||||
|
||||
# Assign the precomputed distance
|
||||
edge.attributes["vector_distance"] = embedding_map[relationship_type]
|
||||
|
||||
except Exception as ex:
|
||||
print(f"Error mapping vector distances to edges: {ex}")
|
||||
|
||||
|
||||
async def calculate_top_triplet_importances(self, k: int) -> List:
|
||||
min_heap = []
|
||||
for i, edge in enumerate(self.edges):
|
||||
source_node = self.get_node(edge.node1.id)
|
||||
target_node = self.get_node(edge.node2.id)
|
||||
|
||||
source_distance = source_node.attributes.get("vector_distance", 1) if source_node else 1
|
||||
target_distance = target_node.attributes.get("vector_distance", 1) if target_node else 1
|
||||
edge_distance = edge.attributes.get("vector_distance", 1)
|
||||
|
||||
total_distance = source_distance + target_distance + edge_distance
|
||||
|
||||
heapq.heappush(min_heap, (-total_distance, i, edge))
|
||||
if len(min_heap) > k:
|
||||
heapq.heappop(min_heap)
|
||||
|
||||
|
||||
return [edge for _, _, edge in sorted(min_heap)]
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
import numpy as np
|
||||
from typing import List, Dict, Optional, Any
|
||||
from typing import List, Dict, Optional, Any, Union
|
||||
|
||||
class Node:
|
||||
"""
|
||||
|
|
@ -21,6 +21,7 @@ class Node:
|
|||
raise ValueError("Dimension must be a positive integer")
|
||||
self.id = node_id
|
||||
self.attributes = attributes if attributes is not None else {}
|
||||
self.attributes["vector_distance"] = float('inf')
|
||||
self.skeleton_neighbours = []
|
||||
self.skeleton_edges = []
|
||||
self.status = np.ones(dimension, dtype=int)
|
||||
|
|
@ -55,6 +56,12 @@ class Node:
|
|||
raise ValueError(f"Dimension {dimension} is out of range. Valid range is 0 to {len(self.status) - 1}.")
|
||||
return self.status[dimension] == 1
|
||||
|
||||
def add_attribute(self, key: str, value: Any) -> None:
|
||||
self.attributes[key] = value
|
||||
|
||||
def get_attribute(self, key: str) -> Union[str, int, float]:
|
||||
return self.attributes[key]
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"Node({self.id}, attributes={self.attributes})"
|
||||
|
||||
|
|
@ -87,6 +94,7 @@ class Edge:
|
|||
self.node1 = node1
|
||||
self.node2 = node2
|
||||
self.attributes = attributes if attributes is not None else {}
|
||||
self.attributes["vector_distance"] = float('inf')
|
||||
self.directed = directed
|
||||
self.status = np.ones(dimension, dtype=int)
|
||||
|
||||
|
|
@ -95,6 +103,12 @@ class Edge:
|
|||
raise ValueError(f"Dimension {dimension} is out of range. Valid range is 0 to {len(self.status) - 1}.")
|
||||
return self.status[dimension] == 1
|
||||
|
||||
def add_attribute(self, key: str, value: Any) -> None:
|
||||
self.attributes[key] = value
|
||||
|
||||
def get_attribute(self, key: str, value: Any) -> Union[str, int, float]:
|
||||
return self.attributes[key]
|
||||
|
||||
def __repr__(self) -> str:
|
||||
direction = "->" if self.directed else "--"
|
||||
return f"Edge({self.node1.id} {direction} {self.node2.id}, attributes={self.attributes})"
|
||||
|
|
|
|||
0
cognee/modules/retrieval/__init__.py
Normal file
0
cognee/modules/retrieval/__init__.py
Normal file
150
cognee/modules/retrieval/brute_force_triplet_search.py
Normal file
150
cognee/modules/retrieval/brute_force_triplet_search.py
Normal file
|
|
@ -0,0 +1,150 @@
|
|||
import asyncio
|
||||
import logging
|
||||
from typing import List
|
||||
from cognee.modules.users.models import User
|
||||
from cognee.modules.users.methods import get_default_user
|
||||
from cognee.modules.graph.cognee_graph.CogneeGraph import CogneeGraph
|
||||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.shared.utils import send_telemetry
|
||||
|
||||
def format_triplets(edges):
|
||||
print("\n\n\n")
|
||||
def filter_attributes(obj, attributes):
|
||||
"""Helper function to filter out non-None properties, including nested dicts."""
|
||||
result = {}
|
||||
for attr in attributes:
|
||||
value = getattr(obj, attr, None)
|
||||
if value is not None:
|
||||
# If the value is a dict, extract relevant keys from it
|
||||
if isinstance(value, dict):
|
||||
nested_values = {k: v for k, v in value.items() if k in attributes and v is not None}
|
||||
result[attr] = nested_values
|
||||
else:
|
||||
result[attr] = value
|
||||
return result
|
||||
|
||||
triplets = []
|
||||
for edge in edges:
|
||||
node1 = edge.node1
|
||||
node2 = edge.node2
|
||||
edge_attributes = edge.attributes
|
||||
node1_attributes = node1.attributes
|
||||
node2_attributes = node2.attributes
|
||||
|
||||
# Filter only non-None properties
|
||||
node1_info = {key: value for key, value in node1_attributes.items() if value is not None}
|
||||
node2_info = {key: value for key, value in node2_attributes.items() if value is not None}
|
||||
edge_info = {key: value for key, value in edge_attributes.items() if value is not None}
|
||||
|
||||
# Create the formatted triplet
|
||||
triplet = (
|
||||
f"Node1: {node1_info}\n"
|
||||
f"Edge: {edge_info}\n"
|
||||
f"Node2: {node2_info}\n\n\n"
|
||||
)
|
||||
triplets.append(triplet)
|
||||
|
||||
return "".join(triplets)
|
||||
|
||||
|
||||
async def brute_force_triplet_search(query: str, user: User = None, top_k = 5) -> list:
|
||||
if user is None:
|
||||
user = await get_default_user()
|
||||
|
||||
if user is None:
|
||||
raise PermissionError("No user found in the system. Please create a user.")
|
||||
|
||||
retrieved_results = await brute_force_search(query, user, top_k)
|
||||
|
||||
|
||||
return retrieved_results
|
||||
|
||||
|
||||
def delete_duplicated_vector_db_elements(collections, results): #:TODO: This is just for now to fix vector db duplicates
|
||||
results_dict = {}
|
||||
for collection, results in zip(collections, results):
|
||||
seen_ids = set()
|
||||
unique_results = []
|
||||
for result in results:
|
||||
if result.id not in seen_ids:
|
||||
unique_results.append(result)
|
||||
seen_ids.add(result.id)
|
||||
else:
|
||||
print(f"Duplicate found in collection '{collection}': {result.id}")
|
||||
results_dict[collection] = unique_results
|
||||
|
||||
return results_dict
|
||||
|
||||
|
||||
async def brute_force_search(
|
||||
query: str,
|
||||
user: User,
|
||||
top_k: int,
|
||||
collections: List[str] = None
|
||||
) -> list:
|
||||
"""
|
||||
Performs a brute force search to retrieve the top triplets from the graph.
|
||||
|
||||
Args:
|
||||
query (str): The search query.
|
||||
user (User): The user performing the search.
|
||||
top_k (int): The number of top results to retrieve.
|
||||
collections (Optional[List[str]]): List of collections to query. Defaults to predefined collections.
|
||||
|
||||
Returns:
|
||||
list: The top triplet results.
|
||||
"""
|
||||
if not query or not isinstance(query, str):
|
||||
raise ValueError("The query must be a non-empty string.")
|
||||
if top_k <= 0:
|
||||
raise ValueError("top_k must be a positive integer.")
|
||||
|
||||
if collections is None:
|
||||
collections = ["entity_name", "text_summary_text", "entity_type_name", "document_chunk_text"]
|
||||
|
||||
try:
|
||||
vector_engine = get_vector_engine()
|
||||
graph_engine = await get_graph_engine()
|
||||
except Exception as e:
|
||||
logging.error("Failed to initialize engines: %s", e)
|
||||
raise RuntimeError("Initialization error") from e
|
||||
|
||||
send_telemetry("cognee.brute_force_triplet_search EXECUTION STARTED", user.id)
|
||||
|
||||
try:
|
||||
results = await asyncio.gather(
|
||||
*[vector_engine.get_distance_from_collection_elements(collection, query_text=query) for collection in collections]
|
||||
)
|
||||
|
||||
############################################# :TODO: Change when vector db does not contain duplicates
|
||||
node_distances = delete_duplicated_vector_db_elements(collections, results)
|
||||
# node_distances = {collection: result for collection, result in zip(collections, results)}
|
||||
##############################################
|
||||
|
||||
memory_fragment = CogneeGraph()
|
||||
|
||||
await memory_fragment.project_graph_from_db(graph_engine,
|
||||
node_properties_to_project=['id',
|
||||
'description',
|
||||
'name',
|
||||
'type',
|
||||
'text'],
|
||||
edge_properties_to_project=['relationship_name'])
|
||||
|
||||
await memory_fragment.map_vector_distances_to_graph_nodes(node_distances=node_distances)
|
||||
|
||||
#:TODO: Change when vectordb contains edge embeddings
|
||||
await memory_fragment.map_vector_distances_to_graph_edges(vector_engine, query)
|
||||
|
||||
results = await memory_fragment.calculate_top_triplet_importances(k=top_k)
|
||||
|
||||
send_telemetry("cognee.brute_force_triplet_search EXECUTION STARTED", user.id)
|
||||
|
||||
#:TODO: Once we have Edge pydantic models we should retrieve the exact edge and node objects from graph db
|
||||
return results
|
||||
|
||||
except Exception as e:
|
||||
logging.error("Error during brute force search for user: %s, query: %s. Error: %s", user.id, query, e)
|
||||
send_telemetry("cognee.brute_force_triplet_search EXECUTION FAILED", user.id)
|
||||
raise RuntimeError("An error occurred during brute force search") from e
|
||||
|
|
@ -4,6 +4,7 @@ import logging
|
|||
import pathlib
|
||||
import cognee
|
||||
from cognee.api.v1.search import SearchType
|
||||
from cognee.modules.retrieval.brute_force_triplet_search import brute_force_triplet_search
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
|
|
@ -61,6 +62,9 @@ async def main():
|
|||
|
||||
assert len(history) == 6, "Search history is not correct."
|
||||
|
||||
results = await brute_force_triplet_search('What is a quantum computer?')
|
||||
assert len(results) > 0
|
||||
|
||||
await cognee.prune.prune_data()
|
||||
assert not os.path.isdir(data_directory_path), "Local data files are not deleted"
|
||||
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@ import logging
|
|||
import pathlib
|
||||
import cognee
|
||||
from cognee.api.v1.search import SearchType
|
||||
from cognee.modules.retrieval.brute_force_triplet_search import brute_force_triplet_search
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
|
|
@ -89,6 +90,9 @@ async def main():
|
|||
history = await cognee.get_search_history()
|
||||
assert len(history) == 6, "Search history is not correct."
|
||||
|
||||
results = await brute_force_triplet_search('What is a quantum computer?')
|
||||
assert len(results) > 0
|
||||
|
||||
await cognee.prune.prune_data()
|
||||
assert not os.path.isdir(data_directory_path), "Local data files are not deleted"
|
||||
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@ import logging
|
|||
import pathlib
|
||||
import cognee
|
||||
from cognee.api.v1.search import SearchType
|
||||
from cognee.modules.retrieval.brute_force_triplet_search import brute_force_triplet_search
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
|
|
@ -61,6 +62,9 @@ async def main():
|
|||
history = await cognee.get_search_history()
|
||||
assert len(history) == 6, "Search history is not correct."
|
||||
|
||||
results = await brute_force_triplet_search('What is a quantum computer?')
|
||||
assert len(results) > 0
|
||||
|
||||
await cognee.prune.prune_data()
|
||||
assert not os.path.isdir(data_directory_path), "Local data files are not deleted"
|
||||
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@ import logging
|
|||
import pathlib
|
||||
import cognee
|
||||
from cognee.api.v1.search import SearchType
|
||||
from cognee.modules.retrieval.brute_force_triplet_search import brute_force_triplet_search
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
|
|
@ -59,6 +60,9 @@ async def main():
|
|||
history = await cognee.get_search_history()
|
||||
assert len(history) == 6, "Search history is not correct."
|
||||
|
||||
results = await brute_force_triplet_search('What is a quantum computer?')
|
||||
assert len(results) > 0
|
||||
|
||||
await cognee.prune.prune_data()
|
||||
assert not os.path.isdir(data_directory_path), "Local data files are not deleted"
|
||||
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ def test_node_initialization():
|
|||
"""Test that a Node is initialized correctly."""
|
||||
node = Node("node1", {"attr1": "value1"}, dimension=2)
|
||||
assert node.id == "node1"
|
||||
assert node.attributes == {"attr1": "value1"}
|
||||
assert node.attributes == {"attr1": "value1", 'vector_distance': np.inf}
|
||||
assert len(node.status) == 2
|
||||
assert np.all(node.status == 1)
|
||||
|
||||
|
|
@ -95,7 +95,7 @@ def test_edge_initialization():
|
|||
edge = Edge(node1, node2, {"weight": 10}, directed=False, dimension=2)
|
||||
assert edge.node1 == node1
|
||||
assert edge.node2 == node2
|
||||
assert edge.attributes == {"weight": 10}
|
||||
assert edge.attributes == {'vector_distance': np.inf,"weight": 10}
|
||||
assert edge.directed is False
|
||||
assert len(edge.status) == 2
|
||||
assert np.all(edge.status == 1)
|
||||
|
|
|
|||
|
|
@ -77,11 +77,11 @@ def test_get_edges_success(setup_graph):
|
|||
graph.add_node(node2)
|
||||
edge = Edge(node1, node2)
|
||||
graph.add_edge(edge)
|
||||
assert edge in graph.get_edges("node1")
|
||||
assert edge in graph.get_edges_from_node("node1")
|
||||
|
||||
|
||||
def test_get_edges_nonexistent_node(setup_graph):
|
||||
"""Test retrieving edges for a nonexistent node raises an exception."""
|
||||
graph = setup_graph
|
||||
with pytest.raises(ValueError, match="Node with id nonexistent does not exist."):
|
||||
graph.get_edges("nonexistent")
|
||||
graph.get_edges_from_node("nonexistent")
|
||||
|
|
|
|||
|
|
@ -46,7 +46,7 @@ services:
|
|||
- 7687:7687
|
||||
environment:
|
||||
- NEO4J_AUTH=neo4j/pleaseletmein
|
||||
- NEO4J_PLUGINS=["apoc"]
|
||||
- NEO4J_PLUGINS=["apoc", "graph-data-science"]
|
||||
networks:
|
||||
- cognee-network
|
||||
|
||||
|
|
|
|||
|
|
@ -1,32 +1,7 @@
|
|||
import cognee
|
||||
import asyncio
|
||||
from cognee.api.v1.search import SearchType
|
||||
|
||||
job_position = """0:Senior Data Scientist (Machine Learning)
|
||||
|
||||
Company: TechNova Solutions
|
||||
Location: San Francisco, CA
|
||||
|
||||
Job Description:
|
||||
|
||||
TechNova Solutions is seeking a Senior Data Scientist specializing in Machine Learning to join our dynamic analytics team. The ideal candidate will have a strong background in developing and deploying machine learning models, working with large datasets, and translating complex data into actionable insights.
|
||||
|
||||
Responsibilities:
|
||||
|
||||
Develop and implement advanced machine learning algorithms and models.
|
||||
Analyze large, complex datasets to extract meaningful patterns and insights.
|
||||
Collaborate with cross-functional teams to integrate predictive models into products.
|
||||
Stay updated with the latest advancements in machine learning and data science.
|
||||
Mentor junior data scientists and provide technical guidance.
|
||||
Qualifications:
|
||||
|
||||
Master’s or Ph.D. in Data Science, Computer Science, Statistics, or a related field.
|
||||
5+ years of experience in data science and machine learning.
|
||||
Proficient in Python, R, and SQL.
|
||||
Experience with deep learning frameworks (e.g., TensorFlow, PyTorch).
|
||||
Strong problem-solving skills and attention to detail.
|
||||
Candidate CVs
|
||||
"""
|
||||
from cognee.modules.retrieval.brute_force_triplet_search import brute_force_triplet_search
|
||||
from cognee.modules.retrieval.brute_force_triplet_search import format_triplets
|
||||
|
||||
job_1 = """
|
||||
CV 1: Relevant
|
||||
|
|
@ -195,7 +170,7 @@ async def main(enable_steps):
|
|||
|
||||
# Step 2: Add text
|
||||
if enable_steps.get("add_text"):
|
||||
text_list = [job_position, job_1, job_2, job_3, job_4, job_5]
|
||||
text_list = [job_1, job_2, job_3, job_4, job_5]
|
||||
for text in text_list:
|
||||
await cognee.add(text)
|
||||
print(f"Added text: {text[:35]}...")
|
||||
|
|
@ -206,24 +181,21 @@ async def main(enable_steps):
|
|||
print("Knowledge graph created.")
|
||||
|
||||
# Step 4: Query insights
|
||||
if enable_steps.get("search_insights"):
|
||||
search_results = await cognee.search(
|
||||
SearchType.INSIGHTS,
|
||||
{'query': 'Which applicant has the most relevant experience in data science?'}
|
||||
)
|
||||
print("Search results:")
|
||||
for result_text in search_results:
|
||||
print(result_text)
|
||||
|
||||
if enable_steps.get("retriever"):
|
||||
results = await brute_force_triplet_search('Who has the most experience with graphic design?')
|
||||
print(format_triplets(results))
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Flags to enable/disable steps
|
||||
|
||||
rebuild_kg = True
|
||||
retrieve = True
|
||||
steps_to_enable = {
|
||||
"prune_data": True,
|
||||
"prune_system": True,
|
||||
"add_text": True,
|
||||
"cognify": True,
|
||||
"search_insights": True
|
||||
"prune_data": rebuild_kg,
|
||||
"prune_system": rebuild_kg,
|
||||
"add_text": rebuild_kg,
|
||||
"cognify": rebuild_kg,
|
||||
"retriever": retrieve
|
||||
}
|
||||
|
||||
asyncio.run(main(steps_to_enable))
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue