Merge pull request #5 from chinu0609/delete-last-acessed
feat: adding cleanup function and adding update_node_acess_timestamps…
This commit is contained in:
commit
bd71540d75
8 changed files with 468 additions and 34 deletions
46
alembic/versions/e1ec1dcb50b6_add_last_accessed_to_data.py
Normal file
46
alembic/versions/e1ec1dcb50b6_add_last_accessed_to_data.py
Normal file
|
|
@ -0,0 +1,46 @@
|
|||
"""add_last_accessed_to_data
|
||||
|
||||
Revision ID: e1ec1dcb50b6
|
||||
Revises: 211ab850ef3d
|
||||
Create Date: 2025-11-04 21:45:52.642322
|
||||
|
||||
"""
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = 'e1ec1dcb50b6'
|
||||
down_revision: Union[str, None] = '211ab850ef3d'
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
def _get_column(inspector, table, name, schema=None):
|
||||
for col in inspector.get_columns(table, schema=schema):
|
||||
if col["name"] == name:
|
||||
return col
|
||||
return None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
conn = op.get_bind()
|
||||
insp = sa.inspect(conn)
|
||||
|
||||
last_accessed_column = _get_column(insp, "data", "last_accessed")
|
||||
if not last_accessed_column:
|
||||
op.add_column('data',
|
||||
sa.Column('last_accessed', sa.DateTime(timezone=True), nullable=True)
|
||||
)
|
||||
# Optionally initialize with created_at values for existing records
|
||||
op.execute("UPDATE data SET last_accessed = created_at")
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
conn = op.get_bind()
|
||||
insp = sa.inspect(conn)
|
||||
|
||||
last_accessed_column = _get_column(insp, "data", "last_accessed")
|
||||
if last_accessed_column:
|
||||
op.drop_column('data', 'last_accessed')
|
||||
|
|
@ -36,6 +36,7 @@ class Data(Base):
|
|||
data_size = Column(Integer, nullable=True) # File size in bytes
|
||||
created_at = Column(DateTime(timezone=True), default=lambda: datetime.now(timezone.utc))
|
||||
updated_at = Column(DateTime(timezone=True), onupdate=lambda: datetime.now(timezone.utc))
|
||||
last_accessed = Column(DateTime(timezone=True), nullable=True)
|
||||
|
||||
datasets = relationship(
|
||||
"Dataset",
|
||||
|
|
|
|||
|
|
@ -5,3 +5,4 @@ from .retrieve_existing_edges import retrieve_existing_edges
|
|||
from .convert_node_to_data_point import convert_node_to_data_point
|
||||
from .deduplicate_nodes_and_edges import deduplicate_nodes_and_edges
|
||||
from .resolve_edges_to_text import resolve_edges_to_text
|
||||
from .get_entity_nodes_from_triplets import get_entity_nodes_from_triplets
|
||||
|
|
|
|||
13
cognee/modules/graph/utils/get_entity_nodes_from_triplets.py
Normal file
13
cognee/modules/graph/utils/get_entity_nodes_from_triplets.py
Normal file
|
|
@ -0,0 +1,13 @@
|
|||
|
||||
def get_entity_nodes_from_triplets(triplets):
|
||||
entity_nodes = []
|
||||
seen_ids = set()
|
||||
for triplet in triplets:
|
||||
if hasattr(triplet, 'node1') and triplet.node1 and triplet.node1.id not in seen_ids:
|
||||
entity_nodes.append({"id": str(triplet.node1.id)})
|
||||
seen_ids.add(triplet.node1.id)
|
||||
if hasattr(triplet, 'node2') and triplet.node2 and triplet.node2.id not in seen_ids:
|
||||
entity_nodes.append({"id": str(triplet.node2.id)})
|
||||
seen_ids.add(triplet.node2.id)
|
||||
|
||||
return entity_nodes
|
||||
|
|
@ -8,6 +8,7 @@ from cognee.modules.retrieval.utils.session_cache import (
|
|||
save_conversation_history,
|
||||
get_conversation_history,
|
||||
)
|
||||
from cognee.modules.retrieval.utils.access_tracking import update_node_access_timestamps
|
||||
from cognee.modules.retrieval.base_retriever import BaseRetriever
|
||||
from cognee.modules.retrieval.exceptions.exceptions import NoDataError
|
||||
from cognee.infrastructure.databases.vector.exceptions import CollectionNotFoundError
|
||||
|
|
@ -65,7 +66,7 @@ class CompletionRetriever(BaseRetriever):
|
|||
|
||||
if len(found_chunks) == 0:
|
||||
return ""
|
||||
|
||||
await update_node_access_timestamps(found_chunks)
|
||||
# Combine all chunks text returned from vector search (number of chunks is determined by top_k
|
||||
chunks_payload = [found_chunk.payload["text"] for found_chunk in found_chunks]
|
||||
combined_context = "\n".join(chunks_payload)
|
||||
|
|
|
|||
|
|
@ -16,11 +16,13 @@ from cognee.modules.retrieval.utils.session_cache import (
|
|||
)
|
||||
from cognee.shared.logging_utils import get_logger
|
||||
from cognee.modules.retrieval.utils.extract_uuid_from_node import extract_uuid_from_node
|
||||
from cognee.modules.retrieval.utils.access_tracking import update_node_access_timestamps
|
||||
from cognee.modules.retrieval.utils.models import CogneeUserInteraction
|
||||
from cognee.modules.engine.models.node_set import NodeSet
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.context_global_variables import session_user
|
||||
from cognee.infrastructure.databases.cache.config import CacheConfig
|
||||
from cognee.modules.graph.utils import get_entity_nodes_from_triplets
|
||||
|
||||
logger = get_logger("GraphCompletionRetriever")
|
||||
|
||||
|
|
@ -139,6 +141,9 @@ class GraphCompletionRetriever(BaseGraphRetriever):
|
|||
|
||||
# context = await self.resolve_edges_to_text(triplets)
|
||||
|
||||
entity_nodes = get_entity_nodes_from_triplets(triplets)
|
||||
|
||||
await update_node_access_timestamps(entity_nodes)
|
||||
return triplets
|
||||
|
||||
async def get_completion(
|
||||
|
|
|
|||
|
|
@ -1,20 +1,27 @@
|
|||
|
||||
"""Utilities for tracking data access in retrievers."""
|
||||
|
||||
import json
|
||||
from datetime import datetime, timezone
|
||||
from typing import List, Any
|
||||
from uuid import UUID
|
||||
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.infrastructure.databases.relational import get_relational_engine
|
||||
from cognee.modules.data.models import Data
|
||||
from cognee.shared.logging_utils import get_logger
|
||||
from sqlalchemy import update
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
async def update_node_access_timestamps(items: List[Any]):
|
||||
"""
|
||||
Update last_accessed_at for nodes in Kuzu graph database.
|
||||
Automatically determines node type from the graph database.
|
||||
Update last_accessed_at for nodes in graph database and corresponding Data records in SQL.
|
||||
|
||||
This function:
|
||||
1. Updates last_accessed_at in the graph database nodes (in properties JSON)
|
||||
2. Traverses to find origin TextDocument nodes (without hardcoded relationship names)
|
||||
3. Updates last_accessed in the SQL Data table for those documents
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
|
@ -26,39 +33,63 @@ async def update_node_access_timestamps(items: List[Any]):
|
|||
|
||||
graph_engine = await get_graph_engine()
|
||||
timestamp_ms = int(datetime.now(timezone.utc).timestamp() * 1000)
|
||||
timestamp_dt = datetime.now(timezone.utc)
|
||||
|
||||
# Extract node IDs
|
||||
node_ids = []
|
||||
for item in items:
|
||||
# Extract ID from payload
|
||||
item_id = item.payload.get("id") if hasattr(item, 'payload') else item.get("id")
|
||||
if not item_id:
|
||||
continue
|
||||
|
||||
# try:
|
||||
# Query to get both node type and properties in one call
|
||||
result = await graph_engine.query(
|
||||
"MATCH (n:Node {id: $id}) RETURN n.type as node_type, n.properties as props",
|
||||
{"id": str(item_id)}
|
||||
)
|
||||
|
||||
if result and len(result) > 0 and result[0]:
|
||||
node_type = result[0][0] # First column: node_type
|
||||
props_json = result[0][1] # Second column: properties
|
||||
|
||||
# Parse existing properties JSON
|
||||
props = json.loads(props_json) if props_json else {}
|
||||
# Update last_accessed_at with millisecond timestamp
|
||||
props["last_accessed_at"] = timestamp_ms
|
||||
|
||||
# Write back to graph database
|
||||
await graph_engine.query(
|
||||
"MATCH (n:Node {id: $id}) SET n.properties = $props",
|
||||
{"id": str(item_id), "props": json.dumps(props)}
|
||||
if item_id:
|
||||
node_ids.append(str(item_id))
|
||||
|
||||
if not node_ids:
|
||||
return
|
||||
|
||||
try:
|
||||
# Step 1: Batch update graph nodes
|
||||
for node_id in node_ids:
|
||||
result = await graph_engine.query(
|
||||
"MATCH (n:Node {id: $id}) RETURN n.properties",
|
||||
{"id": node_id}
|
||||
)
|
||||
|
||||
logger.debug(f"Updated access timestamp for {node_type} node {item_id}")
|
||||
if result and result[0]:
|
||||
props = json.loads(result[0][0]) if result[0][0] else {}
|
||||
props["last_accessed_at"] = timestamp_ms
|
||||
|
||||
# except Exception as e:
|
||||
# logger.error(f"Failed to update timestamp for node {item_id}: {e}")
|
||||
# continue
|
||||
|
||||
logger.debug(f"Updated access timestamps for {len(items)} nodes")
|
||||
await graph_engine.query(
|
||||
"MATCH (n:Node {id: $id}) SET n.properties = $props",
|
||||
{"id": node_id, "props": json.dumps(props)}
|
||||
)
|
||||
|
||||
logger.debug(f"Updated access timestamps for {len(node_ids)} graph nodes")
|
||||
|
||||
# Step 2: Find origin TextDocument nodes (without hardcoded relationship names)
|
||||
origin_query = """
|
||||
UNWIND $node_ids AS node_id
|
||||
MATCH (chunk:Node {id: node_id})-[e:EDGE]-(doc:Node)
|
||||
WHERE chunk.type = 'DocumentChunk' AND doc.type IN ['TextDocument', 'Document']
|
||||
RETURN DISTINCT doc.id
|
||||
"""
|
||||
|
||||
result = await graph_engine.query(origin_query, {"node_ids": node_ids})
|
||||
|
||||
# Extract and deduplicate document IDs
|
||||
doc_ids = list(set([row[0] for row in result if row and row[0]])) if result else []
|
||||
|
||||
# Step 3: Update SQL Data table
|
||||
if doc_ids:
|
||||
db_engine = get_relational_engine()
|
||||
async with db_engine.get_async_session() as session:
|
||||
stmt = update(Data).where(
|
||||
Data.id.in_([UUID(doc_id) for doc_id in doc_ids])
|
||||
).values(last_accessed=timestamp_dt)
|
||||
|
||||
await session.execute(stmt)
|
||||
await session.commit()
|
||||
|
||||
logger.debug(f"Updated last_accessed for {len(doc_ids)} Data records in SQL")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to update timestamps: {e}")
|
||||
raise
|
||||
|
|
|
|||
336
cognee/tasks/cleanup/cleanup_unused_data.py
Normal file
336
cognee/tasks/cleanup/cleanup_unused_data.py
Normal file
|
|
@ -0,0 +1,336 @@
|
|||
"""
|
||||
Task for automatically deleting unused data from the memify pipeline.
|
||||
|
||||
This task identifies and removes data (chunks, entities, summaries) that hasn't
|
||||
been accessed by retrievers for a specified period, helping maintain system
|
||||
efficiency and storage optimization.
|
||||
"""
|
||||
|
||||
import json
|
||||
from datetime import datetime, timezone, timedelta
|
||||
from typing import Optional, Dict, Any
|
||||
from uuid import UUID
|
||||
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
from cognee.infrastructure.databases.relational import get_relational_engine
|
||||
from cognee.modules.data.models import Data, DatasetData
|
||||
from cognee.shared.logging_utils import get_logger
|
||||
from sqlalchemy import select, or_
|
||||
import cognee
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
async def cleanup_unused_data(
|
||||
days_threshold: Optional[int],
|
||||
dry_run: bool = True,
|
||||
user_id: Optional[UUID] = None,
|
||||
text_doc: bool = False
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Identify and remove unused data from the memify pipeline.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
days_threshold : int
|
||||
days since last access to consider data unused
|
||||
dry_run : bool
|
||||
If True, only report what would be deleted without actually deleting (default: True)
|
||||
user_id : UUID, optional
|
||||
Limit cleanup to specific user's data (default: None)
|
||||
text_doc : bool
|
||||
If True, use SQL-based filtering to find unused TextDocuments and call cognee.delete()
|
||||
for proper whole-document deletion (default: False)
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, Any]
|
||||
Cleanup results with status, counts, and timestamp
|
||||
"""
|
||||
logger.info(
|
||||
"Starting cleanup task",
|
||||
days_threshold=days_threshold,
|
||||
dry_run=dry_run,
|
||||
user_id=str(user_id) if user_id else None,
|
||||
text_doc=text_doc
|
||||
)
|
||||
|
||||
# Calculate cutoff timestamp
|
||||
cutoff_date = datetime.now(timezone.utc) - timedelta(days=days_threshold)
|
||||
|
||||
if text_doc:
|
||||
# SQL-based approach: Find unused TextDocuments and use cognee.delete()
|
||||
return await _cleanup_via_sql(cutoff_date, dry_run, user_id)
|
||||
else:
|
||||
# Graph-based approach: Find unused nodes directly from graph
|
||||
cutoff_timestamp_ms = int(cutoff_date.timestamp() * 1000)
|
||||
logger.debug(f"Cutoff timestamp: {cutoff_date.isoformat()} ({cutoff_timestamp_ms}ms)")
|
||||
|
||||
# Find unused nodes
|
||||
unused_nodes = await _find_unused_nodes(cutoff_timestamp_ms, user_id)
|
||||
|
||||
total_unused = sum(len(nodes) for nodes in unused_nodes.values())
|
||||
logger.info(f"Found {total_unused} unused nodes", unused_nodes={k: len(v) for k, v in unused_nodes.items()})
|
||||
|
||||
if dry_run:
|
||||
return {
|
||||
"status": "dry_run",
|
||||
"unused_count": total_unused,
|
||||
"deleted_count": {
|
||||
"data_items": 0,
|
||||
"chunks": 0,
|
||||
"entities": 0,
|
||||
"summaries": 0,
|
||||
"associations": 0
|
||||
},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat(),
|
||||
"preview": {
|
||||
"chunks": len(unused_nodes["DocumentChunk"]),
|
||||
"entities": len(unused_nodes["Entity"]),
|
||||
"summaries": len(unused_nodes["TextSummary"])
|
||||
}
|
||||
}
|
||||
|
||||
# Delete unused nodes
|
||||
deleted_counts = await _delete_unused_nodes(unused_nodes)
|
||||
|
||||
logger.info("Cleanup completed", deleted_counts=deleted_counts)
|
||||
|
||||
return {
|
||||
"status": "completed",
|
||||
"unused_count": total_unused,
|
||||
"deleted_count": {
|
||||
"data_items": 0,
|
||||
"chunks": deleted_counts["DocumentChunk"],
|
||||
"entities": deleted_counts["Entity"],
|
||||
"summaries": deleted_counts["TextSummary"],
|
||||
"associations": deleted_counts["associations"]
|
||||
},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat()
|
||||
}
|
||||
|
||||
|
||||
async def _cleanup_via_sql(
|
||||
cutoff_date: datetime,
|
||||
dry_run: bool,
|
||||
user_id: Optional[UUID] = None
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
SQL-based cleanup: Query Data table for unused documents and use cognee.delete().
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cutoff_date : datetime
|
||||
Cutoff date for last_accessed filtering
|
||||
dry_run : bool
|
||||
If True, only report what would be deleted
|
||||
user_id : UUID, optional
|
||||
Filter by user ID if provided
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, Any]
|
||||
Cleanup results
|
||||
"""
|
||||
db_engine = get_relational_engine()
|
||||
|
||||
async with db_engine.get_async_session() as session:
|
||||
# Query for Data records with old last_accessed timestamps
|
||||
query = select(Data, DatasetData).join(
|
||||
DatasetData, Data.id == DatasetData.data_id
|
||||
).where(
|
||||
or_(
|
||||
Data.last_accessed < cutoff_date,
|
||||
Data.last_accessed.is_(None)
|
||||
)
|
||||
)
|
||||
|
||||
if user_id:
|
||||
from cognee.modules.data.models import Dataset
|
||||
query = query.join(Dataset, DatasetData.dataset_id == Dataset.id).where(
|
||||
Dataset.owner_id == user_id
|
||||
)
|
||||
|
||||
result = await session.execute(query)
|
||||
unused_data = result.all()
|
||||
|
||||
logger.info(f"Found {len(unused_data)} unused documents in SQL")
|
||||
|
||||
if dry_run:
|
||||
return {
|
||||
"status": "dry_run",
|
||||
"unused_count": len(unused_data),
|
||||
"deleted_count": {
|
||||
"data_items": 0,
|
||||
"documents": 0
|
||||
},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat(),
|
||||
"preview": {
|
||||
"documents": len(unused_data)
|
||||
}
|
||||
}
|
||||
|
||||
# Delete each document using cognee.delete()
|
||||
deleted_count = 0
|
||||
from cognee.modules.users.methods import get_default_user
|
||||
user = await get_default_user() if user_id is None else None
|
||||
|
||||
for data, dataset_data in unused_data:
|
||||
try:
|
||||
await cognee.delete(
|
||||
data_id=data.id,
|
||||
dataset_id=dataset_data.dataset_id,
|
||||
mode="hard", # Use hard mode to also remove orphaned entities
|
||||
user=user
|
||||
)
|
||||
deleted_count += 1
|
||||
logger.info(f"Deleted document {data.id} from dataset {dataset_data.dataset_id}")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete document {data.id}: {e}")
|
||||
|
||||
logger.info("Cleanup completed", deleted_count=deleted_count)
|
||||
|
||||
return {
|
||||
"status": "completed",
|
||||
"unused_count": len(unused_data),
|
||||
"deleted_count": {
|
||||
"data_items": deleted_count,
|
||||
"documents": deleted_count
|
||||
},
|
||||
"cleanup_date": datetime.now(timezone.utc).isoformat()
|
||||
}
|
||||
|
||||
|
||||
async def _find_unused_nodes(
|
||||
cutoff_timestamp_ms: int,
|
||||
user_id: Optional[UUID] = None
|
||||
) -> Dict[str, list]:
|
||||
"""
|
||||
Query Kuzu for nodes with old last_accessed_at timestamps.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cutoff_timestamp_ms : int
|
||||
Cutoff timestamp in milliseconds since epoch
|
||||
user_id : UUID, optional
|
||||
Filter by user ID if provided
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, list]
|
||||
Dictionary mapping node types to lists of unused node IDs
|
||||
"""
|
||||
graph_engine = await get_graph_engine()
|
||||
|
||||
# Query all nodes with their properties
|
||||
query = "MATCH (n:Node) RETURN n.id, n.type, n.properties"
|
||||
results = await graph_engine.query(query)
|
||||
|
||||
unused_nodes = {
|
||||
"DocumentChunk": [],
|
||||
"Entity": [],
|
||||
"TextSummary": []
|
||||
}
|
||||
|
||||
for node_id, node_type, props_json in results:
|
||||
# Only process tracked node types
|
||||
if node_type not in unused_nodes:
|
||||
continue
|
||||
|
||||
# Parse properties JSON
|
||||
if props_json:
|
||||
try:
|
||||
props = json.loads(props_json)
|
||||
last_accessed = props.get("last_accessed_at")
|
||||
|
||||
# Check if node is unused (never accessed or accessed before cutoff)
|
||||
if last_accessed is None or last_accessed < cutoff_timestamp_ms:
|
||||
unused_nodes[node_type].append(node_id)
|
||||
logger.debug(
|
||||
f"Found unused {node_type}",
|
||||
node_id=node_id,
|
||||
last_accessed=last_accessed
|
||||
)
|
||||
except json.JSONDecodeError:
|
||||
logger.warning(f"Failed to parse properties for node {node_id}")
|
||||
continue
|
||||
|
||||
return unused_nodes
|
||||
|
||||
|
||||
async def _delete_unused_nodes(unused_nodes: Dict[str, list]) -> Dict[str, int]:
|
||||
"""
|
||||
Delete unused nodes from graph and vector databases.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
unused_nodes : Dict[str, list]
|
||||
Dictionary mapping node types to lists of node IDs to delete
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, int]
|
||||
Count of deleted items by type
|
||||
"""
|
||||
graph_engine = await get_graph_engine()
|
||||
vector_engine = get_vector_engine()
|
||||
|
||||
deleted_counts = {
|
||||
"DocumentChunk": 0,
|
||||
"Entity": 0,
|
||||
"TextSummary": 0,
|
||||
"associations": 0
|
||||
}
|
||||
|
||||
# Count associations before deletion
|
||||
for node_type, node_ids in unused_nodes.items():
|
||||
if not node_ids:
|
||||
continue
|
||||
|
||||
# Count edges connected to these nodes
|
||||
for node_id in node_ids:
|
||||
result = await graph_engine.query(
|
||||
"MATCH (n:Node {id: $id})-[r:EDGE]-() RETURN count(r)",
|
||||
{"id": node_id}
|
||||
)
|
||||
if result and len(result) > 0:
|
||||
deleted_counts["associations"] += result[0][0]
|
||||
|
||||
# Delete from graph database (uses DETACH DELETE, so edges are automatically removed)
|
||||
for node_type, node_ids in unused_nodes.items():
|
||||
if not node_ids:
|
||||
continue
|
||||
|
||||
logger.info(f"Deleting {len(node_ids)} {node_type} nodes from graph database")
|
||||
|
||||
# Delete nodes in batches
|
||||
await graph_engine.delete_nodes(node_ids)
|
||||
deleted_counts[node_type] = len(node_ids)
|
||||
|
||||
# Delete from vector database
|
||||
vector_collections = {
|
||||
"DocumentChunk": "DocumentChunk_text",
|
||||
"Entity": "Entity_name",
|
||||
"TextSummary": "TextSummary_text"
|
||||
}
|
||||
|
||||
for node_type, collection_name in vector_collections.items():
|
||||
node_ids = unused_nodes[node_type]
|
||||
if not node_ids:
|
||||
continue
|
||||
|
||||
logger.info(f"Deleting {len(node_ids)} {node_type} embeddings from vector database")
|
||||
|
||||
try:
|
||||
# Delete from vector collection
|
||||
if await vector_engine.has_collection(collection_name):
|
||||
for node_id in node_ids:
|
||||
try:
|
||||
await vector_engine.delete(collection_name, {"id": str(node_id)})
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete {node_id} from {collection_name}: {e}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting from vector collection {collection_name}: {e}")
|
||||
|
||||
return deleted_counts
|
||||
Loading…
Add table
Reference in a new issue