Update eval_swe_bench

This commit is contained in:
Leon Luithlen 2024-11-27 12:12:12 +01:00
parent 618d476c30
commit b46af5a6f6

View file

@ -26,9 +26,6 @@ from cognee.infrastructure.databases.graph import get_graph_engine
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt
from evals.eval_utils import download_instances
from evals.eval_utils import ingest_repos
from evals.eval_utils import download_github_repo
from evals.eval_utils import delete_repo
def check_install_package(package_name):
@ -49,8 +46,14 @@ def check_install_package(package_name):
return False
<<<<<<< HEAD
async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS):
=======
async def generate_patch_with_cognee(
instance, search_type=SearchType.CHUNKS
):
>>>>>>> c4e3634 (Update eval_swe_bench)
await cognee.prune.prune_data()
await cognee.prune.prune_system()
@ -81,7 +84,7 @@ async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS):
await render_graph(None, include_labels = True, include_nodes = True)
problem_statement = instance["problem_statement"]
problem_statement = instance['problem_statement']
instructions = read_query_prompt("patch_gen_instructions.txt")
graph_str = 'HERE WE SHOULD PASS THE TRIPLETS FROM GRAPHRAG'
@ -97,7 +100,6 @@ async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS):
]
)
llm_client = get_llm_client()
answer_prediction = await llm_client.acreate_structured_output(
text_input=problem_statement,
system_prompt=prompt,
@ -106,8 +108,9 @@ async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS):
return answer_prediction
async def generate_patch_without_cognee(instance, llm_client):
problem_statement = instance["problem_statement"]
problem_statement = instance['problem_statement']
prompt = instance["text"]
answer_prediction = await llm_client.acreate_structured_output(
@ -134,7 +137,10 @@ async def get_preds(dataset, with_cognee=True):
for instance in dataset
]
model_patches = await asyncio.gather(*[x[1] for x in futures])
<<<<<<< HEAD
=======
>>>>>>> c4e3634 (Update eval_swe_bench)
preds = [
{
"instance_id": instance_id,
@ -149,9 +155,8 @@ async def get_preds(dataset, with_cognee=True):
async def main():
parser = argparse.ArgumentParser(
description="Run LLM predictions on SWE-bench dataset"
)
parser.add_argument("--cognee_off", action="store_true")
description="Run LLM predictions on SWE-bench dataset")
parser.add_argument('--cognee_off', action='store_true')
parser.add_argument("--max_workers", type=int, required=True)
args = parser.parse_args()
@ -159,16 +164,17 @@ async def main():
check_install_package(dependency)
if args.cognee_off:
dataset_name = "princeton-nlp/SWE-bench_Lite_bm25_13K"
dataset = load_swebench_dataset(dataset_name, split="test")
dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K'
dataset = load_swebench_dataset(dataset_name, split='test')
predictions_path = "preds_nocognee.json"
if not Path(predictions_path).exists():
preds = await get_preds(dataset, with_cognee=False)
with open(predictions_path, "w") as file:
json.dump(preds, file)
else:
dataset_name = "princeton-nlp/SWE-bench_Lite"
swe_dataset = load_swebench_dataset(dataset_name, split="test")[:1]
dataset_name = 'princeton-nlp/SWE-bench_Lite'
swe_dataset = load_swebench_dataset(
dataset_name, split='test')[:1]
filepath = Path("SWE-bench_testsample")
if filepath.exists():
dataset = Dataset.load_from_disk(filepath)
@ -179,6 +185,7 @@ async def main():
with open(predictions_path, "w") as file:
json.dump(preds, file)
<<<<<<< HEAD
subprocess.run(
[
@ -198,6 +205,14 @@ async def main():
]
)
=======
subprocess.run(["python", "-m", "swebench.harness.run_evaluation",
"--dataset_name", dataset_name,
"--split", "test",
"--predictions_path", predictions_path,
"--max_workers", "1",
"--run_id", "test_run"])
>>>>>>> c4e3634 (Update eval_swe_bench)
if __name__ == "__main__":
import asyncio