fix: convert qdrant search results to ScoredPoint
This commit is contained in:
parent
9fe1b6c5fa
commit
b1b6b79ca4
6 changed files with 8 additions and 6 deletions
|
|
@ -3,6 +3,7 @@ from uuid import UUID
|
|||
from typing import List, Dict, Optional
|
||||
from qdrant_client import AsyncQdrantClient, models
|
||||
|
||||
from cognee.infrastructure.databases.vector.models.ScoredResult import ScoredResult
|
||||
from cognee.infrastructure.engine import DataPoint
|
||||
from ..vector_db_interface import VectorDBInterface
|
||||
from ..embeddings.EmbeddingEngine import EmbeddingEngine
|
||||
|
|
|
|||
|
|
@ -1,2 +1,3 @@
|
|||
from .generate_node_id import generate_node_id
|
||||
from .generate_node_name import generate_node_name
|
||||
from .generate_edge_name import generate_edge_name
|
||||
|
|
|
|||
|
|
@ -1,2 +1,2 @@
|
|||
def generate_node_name(name: str) -> str:
|
||||
return name.lower().replace(" ", "_").replace("'", "")
|
||||
return name.lower().replace("'", "")
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ from cognee.infrastructure.databases.graph import get_graph_engine
|
|||
from cognee.modules.data.extraction.knowledge_graph import extract_content_graph
|
||||
from cognee.modules.chunking.models.DocumentChunk import DocumentChunk
|
||||
from cognee.modules.engine.models import EntityType, Entity
|
||||
from cognee.modules.engine.utils import generate_node_id, generate_node_name
|
||||
from cognee.modules.engine.utils import generate_edge_name, generate_node_id, generate_node_name
|
||||
from cognee.tasks.storage import add_data_points
|
||||
|
||||
async def extract_graph_from_data(data_chunks: list[DocumentChunk], graph_model: Type[BaseModel]):
|
||||
|
|
@ -95,7 +95,7 @@ async def extract_graph_from_data(data_chunks: list[DocumentChunk], graph_model:
|
|||
for edge in graph.edges:
|
||||
source_node_id = generate_node_id(edge.source_node_id)
|
||||
target_node_id = generate_node_id(edge.target_node_id)
|
||||
relationship_name = generate_node_name(edge.relationship_name)
|
||||
relationship_name = generate_edge_name(edge.relationship_name)
|
||||
|
||||
edge_key = str(source_node_id) + str(target_node_id) + relationship_name
|
||||
|
||||
|
|
@ -105,7 +105,7 @@ async def extract_graph_from_data(data_chunks: list[DocumentChunk], graph_model:
|
|||
target_node_id,
|
||||
edge.relationship_name,
|
||||
dict(
|
||||
relationship_name = generate_node_name(edge.relationship_name),
|
||||
relationship_name = generate_edge_name(edge.relationship_name),
|
||||
source_node_id = source_node_id,
|
||||
target_node_id = target_node_id,
|
||||
),
|
||||
|
|
|
|||
|
|
@ -37,7 +37,7 @@ async def main():
|
|||
|
||||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
vector_engine = get_vector_engine()
|
||||
random_node = (await vector_engine.search("Entity_name", "AI"))[0]
|
||||
random_node = (await vector_engine.search("Entity_name", "Quantum computer"))[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(SearchType.INSIGHTS, query = random_node_name)
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ async def main():
|
|||
|
||||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
vector_engine = get_vector_engine()
|
||||
random_node = (await vector_engine.search("Entity_name", "AI"))[0]
|
||||
random_node = (await vector_engine.search("Entity_name", "quantum computer"))[0]
|
||||
random_node_name = random_node.payload["text"]
|
||||
|
||||
search_results = await cognee.search(SearchType.INSIGHTS, query = random_node_name)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue