fix: add default params to run_tasks (#563)

<!-- .github/pull_request_template.md -->

## Description
<!-- Provide a clear description of the changes in this PR -->

## DCO Affirmation
I affirm that all code in every commit of this pull request conforms to
the terms of the Topoteretes Developer Certificate of Origin


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Enhanced the task execution process by enabling default values for
certain parameters, allowing users to trigger task processing without
supplying every input explicitly.
  
- **Bug Fixes**
- Adjusted asynchronous handling for the `retrieved_edges_to_string`
function to ensure proper execution flow in various components.

- **Documentation**
- Updated markdown formatting in the Jupyter notebook for improved
readability and structure.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: hajdul88 <52442977+hajdul88@users.noreply.github.com>
This commit is contained in:
Boris 2025-02-19 20:18:51 +01:00 committed by GitHub
parent e56d86b410
commit ada466879e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 27 additions and 12 deletions

View file

@ -1,7 +1,7 @@
import inspect
import json
import logging
from uuid import UUID
from uuid import UUID, uuid4
from typing import Any
from cognee.modules.pipelines.operations import (
@ -269,7 +269,12 @@ async def run_tasks_with_telemetry(tasks: list[Task], data, pipeline_name: str):
raise error
async def run_tasks(tasks: list[Task], dataset_id: UUID, data: Any, pipeline_name: str):
async def run_tasks(
tasks: list[Task],
dataset_id: UUID = uuid4(),
data: Any = None,
pipeline_name: str = "unknown_pipeline",
):
pipeline_id = uuid5(NAMESPACE_OID, pipeline_name)
pipeline_run = await log_pipeline_run_start(pipeline_id, dataset_id, data)

View file

@ -13,7 +13,7 @@ from cognee.infrastructure.llm.prompts import read_query_prompt
from cognee.modules.retrieval.description_to_codepart_search import (
code_description_to_code_part_search,
)
from evals.eval_utils import download_github_repo, retrieved_edges_to_string
from evals.eval_utils import download_github_repo
def check_install_package(package_name):

View file

@ -122,7 +122,7 @@ async def get_context_with_brute_force_triplet_search(instance: dict) -> str:
found_triplets = await brute_force_triplet_search(instance["question"], top_k=5)
search_results_str = retrieved_edges_to_string(found_triplets)
search_results_str = await retrieved_edges_to_string(found_triplets)
return search_results_str

View file

@ -51,7 +51,7 @@ async def main():
args = {
"question": query,
"context": retrieved_edges_to_string(triplets),
"context": await retrieved_edges_to_string(triplets),
}
user_prompt = render_prompt("graph_context_for_question.txt", args)

View file

@ -3,7 +3,9 @@
{
"cell_type": "markdown",
"metadata": {},
"source": "# Cognee Graphiti integration demo"
"source": [
"# Cognee Graphiti integration demo"
]
},
{
"cell_type": "markdown",
@ -12,7 +14,9 @@
"languageId": "plaintext"
}
},
"source": "First we import the necessary libaries"
"source": [
"First we import the necessary libaries"
]
},
{
"cell_type": "code",
@ -90,7 +94,9 @@
{
"cell_type": "markdown",
"metadata": {},
"source": "## Input texts with temporal information"
"source": [
"## Input texts with temporal information"
]
},
{
"cell_type": "code",
@ -113,7 +119,9 @@
{
"cell_type": "markdown",
"metadata": {},
"source": "## Running graphiti + transforming its graph into cognee's core system (graph transformation + vector embeddings)"
"source": [
"## Running graphiti + transforming its graph into cognee's core system (graph transformation + vector embeddings)"
]
},
{
"cell_type": "code",
@ -181,11 +189,13 @@
{
"cell_type": "markdown",
"metadata": {},
"source": "## Retrieving and generating answer from graphiti graph with cognee retriever"
"source": [
"## Retrieving and generating answer from graphiti graph with cognee retriever"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2025-01-15T10:44:27.844438Z",
@ -213,7 +223,7 @@
")\n",
"\n",
"# Step 3: Preparing the Context for the LLM\n",
"context = retrieved_edges_to_string(triplets)\n",
"context = await retrieved_edges_to_string(triplets)\n",
"\n",
"args = {\"question\": query, \"context\": context}\n",
"\n",