Feat/cog 544 eval on swe bench (#5)
Evaluation script for SWE-bench benchmarking with and without cognee
This commit is contained in:
commit
ad08b53ed7
3 changed files with 224 additions and 0 deletions
|
|
@ -0,0 +1,3 @@
|
|||
I need you to solve this issue by looking at the provided knowledge graph and
|
||||
generating a single patch file that I can apply directly to this repository using git apply.
|
||||
Please respond with a single patch file in the following format.
|
||||
118
evals/eval_swe_bench.py
Normal file
118
evals/eval_swe_bench.py
Normal file
|
|
@ -0,0 +1,118 @@
|
|||
import argparse
|
||||
import json
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
from datasets import Dataset
|
||||
from swebench.harness.utils import load_swebench_dataset
|
||||
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
|
||||
|
||||
import cognee
|
||||
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
|
||||
from cognee.api.v1.search import SearchType
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
||||
from cognee.infrastructure.llm.prompts import read_query_prompt
|
||||
from evals.eval_utils import download_instances
|
||||
|
||||
|
||||
async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS):
|
||||
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
dataset_name = "SWE_test_data"
|
||||
code_text = instance["text"]
|
||||
await cognee.add([code_text], dataset_name)
|
||||
await code_graph_pipeline([dataset_name])
|
||||
graph_engine = await get_graph_engine()
|
||||
with open(graph_engine.filename, "r") as f:
|
||||
graph_str = f.read()
|
||||
|
||||
problem_statement = instance['problem_statement']
|
||||
instructions = read_query_prompt("patch_gen_instructions.txt")
|
||||
|
||||
prompt = "\n".join([
|
||||
instructions,
|
||||
"<patch>",
|
||||
PATCH_EXAMPLE,
|
||||
"</patch>",
|
||||
"This is the knowledge graph:",
|
||||
graph_str
|
||||
])
|
||||
|
||||
llm_client = get_llm_client()
|
||||
answer_prediction = await llm_client.acreate_structured_output(
|
||||
text_input=problem_statement,
|
||||
system_prompt=prompt,
|
||||
response_model=str,
|
||||
)
|
||||
return answer_prediction
|
||||
|
||||
|
||||
async def generate_patch_without_cognee(instance):
|
||||
problem_statement = instance['problem_statement']
|
||||
prompt = instance["text"]
|
||||
|
||||
llm_client = get_llm_client()
|
||||
answer_prediction = await llm_client.acreate_structured_output(
|
||||
text_input=problem_statement,
|
||||
system_prompt=prompt,
|
||||
response_model=str,
|
||||
)
|
||||
return answer_prediction
|
||||
|
||||
|
||||
async def get_preds(dataset, with_cognee=True):
|
||||
if with_cognee:
|
||||
model_name = "with_cognee"
|
||||
pred_func = generate_patch_with_cognee
|
||||
else:
|
||||
model_name = "without_cognee"
|
||||
pred_func = generate_patch_without_cognee
|
||||
|
||||
preds = [{"instance_id": instance["instance_id"],
|
||||
"model_patch": await pred_func(instance),
|
||||
"model_name_or_path": model_name} for instance in dataset]
|
||||
|
||||
return preds
|
||||
|
||||
|
||||
async def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run LLM predictions on SWE-bench dataset")
|
||||
parser.add_argument('--cognee_off', action='store_true')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.cognee_off:
|
||||
dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K'
|
||||
dataset = load_swebench_dataset(dataset_name, split='test')
|
||||
predictions_path = "preds_nocognee.json"
|
||||
if not Path(predictions_path).exists():
|
||||
preds = await get_preds(dataset, with_cognee=False)
|
||||
with open(predictions_path, "w") as file:
|
||||
json.dump(preds, file)
|
||||
else:
|
||||
dataset_name = 'princeton-nlp/SWE-bench_Lite'
|
||||
swe_dataset = load_swebench_dataset(
|
||||
dataset_name, split='test')[:1]
|
||||
filepath = Path("SWE-bench_testsample")
|
||||
if filepath.exists():
|
||||
dataset = Dataset.load_from_disk(filepath)
|
||||
else:
|
||||
dataset = download_instances(swe_dataset, filepath)
|
||||
predictions_path = "preds.json"
|
||||
preds = await get_preds(dataset, with_cognee=not args.cognee_off)
|
||||
with open(predictions_path, "w") as file:
|
||||
json.dump(preds, file)
|
||||
|
||||
subprocess.run(["python", "-m", "swebench.harness.run_evaluation",
|
||||
"--dataset_name", dataset_name,
|
||||
"--split", "test",
|
||||
"--predictions_path", predictions_path,
|
||||
"--max_workers", "1",
|
||||
"--run_id", "test_run"])
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
asyncio.run(main(), debug=True)
|
||||
103
evals/eval_utils.py
Normal file
103
evals/eval_utils.py
Normal file
|
|
@ -0,0 +1,103 @@
|
|||
import os
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
from datasets import Dataset
|
||||
from swebench.inference.make_datasets.create_instance import make_code_text
|
||||
from swebench.inference.make_datasets.utils import (AutoContextManager,
|
||||
ingest_directory_contents)
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
|
||||
def ingest_files(filenames):
|
||||
files_dict = dict()
|
||||
for filename in filenames:
|
||||
with open(filename) as f:
|
||||
content = f.read()
|
||||
files_dict[filename] = content
|
||||
return files_dict
|
||||
|
||||
|
||||
def ingest_repos(input_instances):
|
||||
orig_dir = os.getcwd()
|
||||
with TemporaryDirectory(
|
||||
dir="/scratch" if os.path.exists("/scratch") else "/tmp"
|
||||
) as root_dir:
|
||||
for instance in tqdm(
|
||||
input_instances.values(),
|
||||
total=len(input_instances),
|
||||
desc="Downloading repos on specific commits",
|
||||
):
|
||||
try:
|
||||
with AutoContextManager(
|
||||
instance, root_dir
|
||||
) as cm:
|
||||
readmes = cm.get_readme_files()
|
||||
instance["readmes"] = ingest_files(readmes)
|
||||
instance["file_contents"] = ingest_directory_contents(
|
||||
cm.repo_path
|
||||
)
|
||||
finally:
|
||||
# if AutoContextManager fails to exit properly future exits will return the wrong directory
|
||||
os.chdir(orig_dir)
|
||||
|
||||
return input_instances
|
||||
|
||||
|
||||
def extract_fields(instance):
|
||||
readmes_text = make_code_text(instance["readmes"])
|
||||
code_text = make_code_text(
|
||||
instance["file_contents"], add_line_numbers=False)
|
||||
|
||||
text_inputs = "\n".join([readmes_text, code_text])
|
||||
text_inputs = text_inputs.strip() + "\n\n"
|
||||
# text_inputs = code_text
|
||||
patch = "\n".join(["<patch>", instance["patch"], "</patch>"])
|
||||
return {**instance, "text": text_inputs, "patch": patch}
|
||||
|
||||
|
||||
def create_dataset(input_instances):
|
||||
columns = [
|
||||
"instance_id",
|
||||
"text",
|
||||
"repo",
|
||||
"base_commit",
|
||||
"problem_statement",
|
||||
"hints_text",
|
||||
"created_at",
|
||||
"patch",
|
||||
"test_patch",
|
||||
"version",
|
||||
"FAIL_TO_PASS",
|
||||
"PASS_TO_PASS",
|
||||
"environment_setup_commit",
|
||||
]
|
||||
|
||||
data_table = {key: list() for key in columns}
|
||||
for instance in input_instances.values():
|
||||
datum = extract_fields(instance)
|
||||
for key in columns:
|
||||
data_table[key].append(datum[key] if key in datum else "")
|
||||
dataset = Dataset.from_dict(data_table)
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
def download_instances(
|
||||
input_data,
|
||||
path=Path("SWE-bench_testsample"),
|
||||
verbose=False,
|
||||
):
|
||||
"""Downloads code from github.
|
||||
|
||||
Args:
|
||||
- input_data: dictionary with unprocessed input instances.
|
||||
- verbose: set ContextManager verbose to True
|
||||
"""
|
||||
input_instances = {x["instance_id"]: x for x in input_data}
|
||||
input_instances_copy = deepcopy(input_instances)
|
||||
input_instances_with_text = ingest_repos(input_instances_copy)
|
||||
dataset = create_dataset(input_instances_with_text)
|
||||
dataset.save_to_disk(path)
|
||||
return dataset
|
||||
Loading…
Add table
Reference in a new issue