Feat/cog 544 eval on swe bench (#5)

Evaluation script for SWE-bench benchmarking with and without cognee
This commit is contained in:
alekszievr 2024-11-20 16:30:28 +01:00 committed by GitHub
commit ad08b53ed7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 224 additions and 0 deletions

View file

@ -0,0 +1,3 @@
I need you to solve this issue by looking at the provided knowledge graph and
generating a single patch file that I can apply directly to this repository using git apply.
Please respond with a single patch file in the following format.

118
evals/eval_swe_bench.py Normal file
View file

@ -0,0 +1,118 @@
import argparse
import json
import subprocess
from pathlib import Path
from datasets import Dataset
from swebench.harness.utils import load_swebench_dataset
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
import cognee
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
from cognee.api.v1.search import SearchType
from cognee.infrastructure.databases.graph import get_graph_engine
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt
from evals.eval_utils import download_instances
async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS):
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
dataset_name = "SWE_test_data"
code_text = instance["text"]
await cognee.add([code_text], dataset_name)
await code_graph_pipeline([dataset_name])
graph_engine = await get_graph_engine()
with open(graph_engine.filename, "r") as f:
graph_str = f.read()
problem_statement = instance['problem_statement']
instructions = read_query_prompt("patch_gen_instructions.txt")
prompt = "\n".join([
instructions,
"<patch>",
PATCH_EXAMPLE,
"</patch>",
"This is the knowledge graph:",
graph_str
])
llm_client = get_llm_client()
answer_prediction = await llm_client.acreate_structured_output(
text_input=problem_statement,
system_prompt=prompt,
response_model=str,
)
return answer_prediction
async def generate_patch_without_cognee(instance):
problem_statement = instance['problem_statement']
prompt = instance["text"]
llm_client = get_llm_client()
answer_prediction = await llm_client.acreate_structured_output(
text_input=problem_statement,
system_prompt=prompt,
response_model=str,
)
return answer_prediction
async def get_preds(dataset, with_cognee=True):
if with_cognee:
model_name = "with_cognee"
pred_func = generate_patch_with_cognee
else:
model_name = "without_cognee"
pred_func = generate_patch_without_cognee
preds = [{"instance_id": instance["instance_id"],
"model_patch": await pred_func(instance),
"model_name_or_path": model_name} for instance in dataset]
return preds
async def main():
parser = argparse.ArgumentParser(
description="Run LLM predictions on SWE-bench dataset")
parser.add_argument('--cognee_off', action='store_true')
args = parser.parse_args()
if args.cognee_off:
dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K'
dataset = load_swebench_dataset(dataset_name, split='test')
predictions_path = "preds_nocognee.json"
if not Path(predictions_path).exists():
preds = await get_preds(dataset, with_cognee=False)
with open(predictions_path, "w") as file:
json.dump(preds, file)
else:
dataset_name = 'princeton-nlp/SWE-bench_Lite'
swe_dataset = load_swebench_dataset(
dataset_name, split='test')[:1]
filepath = Path("SWE-bench_testsample")
if filepath.exists():
dataset = Dataset.load_from_disk(filepath)
else:
dataset = download_instances(swe_dataset, filepath)
predictions_path = "preds.json"
preds = await get_preds(dataset, with_cognee=not args.cognee_off)
with open(predictions_path, "w") as file:
json.dump(preds, file)
subprocess.run(["python", "-m", "swebench.harness.run_evaluation",
"--dataset_name", dataset_name,
"--split", "test",
"--predictions_path", predictions_path,
"--max_workers", "1",
"--run_id", "test_run"])
if __name__ == "__main__":
import asyncio
asyncio.run(main(), debug=True)

103
evals/eval_utils.py Normal file
View file

@ -0,0 +1,103 @@
import os
from copy import deepcopy
from pathlib import Path
from tempfile import TemporaryDirectory
from datasets import Dataset
from swebench.inference.make_datasets.create_instance import make_code_text
from swebench.inference.make_datasets.utils import (AutoContextManager,
ingest_directory_contents)
from tqdm.auto import tqdm
def ingest_files(filenames):
files_dict = dict()
for filename in filenames:
with open(filename) as f:
content = f.read()
files_dict[filename] = content
return files_dict
def ingest_repos(input_instances):
orig_dir = os.getcwd()
with TemporaryDirectory(
dir="/scratch" if os.path.exists("/scratch") else "/tmp"
) as root_dir:
for instance in tqdm(
input_instances.values(),
total=len(input_instances),
desc="Downloading repos on specific commits",
):
try:
with AutoContextManager(
instance, root_dir
) as cm:
readmes = cm.get_readme_files()
instance["readmes"] = ingest_files(readmes)
instance["file_contents"] = ingest_directory_contents(
cm.repo_path
)
finally:
# if AutoContextManager fails to exit properly future exits will return the wrong directory
os.chdir(orig_dir)
return input_instances
def extract_fields(instance):
readmes_text = make_code_text(instance["readmes"])
code_text = make_code_text(
instance["file_contents"], add_line_numbers=False)
text_inputs = "\n".join([readmes_text, code_text])
text_inputs = text_inputs.strip() + "\n\n"
# text_inputs = code_text
patch = "\n".join(["<patch>", instance["patch"], "</patch>"])
return {**instance, "text": text_inputs, "patch": patch}
def create_dataset(input_instances):
columns = [
"instance_id",
"text",
"repo",
"base_commit",
"problem_statement",
"hints_text",
"created_at",
"patch",
"test_patch",
"version",
"FAIL_TO_PASS",
"PASS_TO_PASS",
"environment_setup_commit",
]
data_table = {key: list() for key in columns}
for instance in input_instances.values():
datum = extract_fields(instance)
for key in columns:
data_table[key].append(datum[key] if key in datum else "")
dataset = Dataset.from_dict(data_table)
return dataset
def download_instances(
input_data,
path=Path("SWE-bench_testsample"),
verbose=False,
):
"""Downloads code from github.
Args:
- input_data: dictionary with unprocessed input instances.
- verbose: set ContextManager verbose to True
"""
input_instances = {x["instance_id"]: x for x in input_data}
input_instances_copy = deepcopy(input_instances)
input_instances_with_text = ingest_repos(input_instances_copy)
dataset = create_dataset(input_instances_with_text)
dataset.save_to_disk(path)
return dataset