From ac5fe4761be7e02dd2ad131056e77c5acb595c29 Mon Sep 17 00:00:00 2001 From: Andrej Milicevic Date: Wed, 15 Oct 2025 10:08:10 +0200 Subject: [PATCH] test: Add entity extraction test --- .../entity_extraction_test.py | 96 +++++++++++++++++++ 1 file changed, 96 insertions(+) create mode 100644 cognee/tests/tasks/entity_extraction/entity_extraction_test.py diff --git a/cognee/tests/tasks/entity_extraction/entity_extraction_test.py b/cognee/tests/tasks/entity_extraction/entity_extraction_test.py new file mode 100644 index 000000000..c63ecfaa1 --- /dev/null +++ b/cognee/tests/tasks/entity_extraction/entity_extraction_test.py @@ -0,0 +1,96 @@ +import os +import pathlib +import asyncio + +import cognee +import cognee.modules.ingestion as ingestion +from cognee.infrastructure.llm import get_max_chunk_tokens +from cognee.infrastructure.llm.extraction import extract_content_graph +from cognee.modules.chunking.TextChunker import TextChunker +from cognee.modules.data.processing.document_types import TextDocument +from cognee.modules.users.methods import get_default_user +from cognee.shared.data_models import KnowledgeGraph +from cognee.tasks.documents import extract_chunks_from_documents +from cognee.tasks.ingestion import save_data_item_to_storage +from cognee.infrastructure.files.utils.open_data_file import open_data_file + + +async def extract_graphs(document_chunks): + """ + Extract graph, and check if entities are present + """ + + extraction_results = await asyncio.gather( + *[ + extract_content_graph(chunk.text, KnowledgeGraph) + for chunk in document_chunks + ] + ) + + return all( + any(term in node.name.lower() + for extraction_result in extraction_results + for node in extraction_result.nodes) + for term in ("qubit", "algorithm", "superposition") + ) + +async def main(): + """ + Test how well the entity extraction works. Repeat graph generation a few times. + If 80% or more graphs are correctly generated, the test passes. + """ + + file_path = os.path.join( + pathlib.Path(__file__).parent.parent.parent, "test_data/Quantum_computers.txt" + ) + + await cognee.prune.prune_data() + await cognee.prune.prune_system(metadata=True) + + + await cognee.add("NLP is a subfield of computer science.") + + original_file_path = await save_data_item_to_storage(file_path) + + async with open_data_file(original_file_path) as file: + classified_data = ingestion.classify(file) + + # data_id is the hash of original file contents + owner id to avoid duplicate data + data_id = ingestion.identify(classified_data, await get_default_user()) + + await cognee.add(file_path) + + text_document = TextDocument( + id=data_id, + type="text", + mime_type="text/plain", + name="quantum_text", + raw_data_location=file_path, + external_metadata=None + ) + + document_chunks = [] + async for chunk in extract_chunks_from_documents( + [text_document], + max_chunk_size=get_max_chunk_tokens(), + chunker=TextChunker + ): + document_chunks.append(chunk) + + + number_of_reps = 5 + + graph_results = await asyncio.gather( + *[ + extract_graphs(document_chunks) + for _ in range(number_of_reps) + ] + ) + + + correct_graphs = [result for result in graph_results if result] + + assert len(correct_graphs) >= 0.8 * number_of_reps + +if __name__ == "__main__": + asyncio.run(main()) \ No newline at end of file