Merge branch 'dev' into feature/cog-3160-redis-session-conversation

This commit is contained in:
hajdul88 2025-10-21 14:25:59 +02:00 committed by GitHub
commit aad6478fa8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 99 additions and 48 deletions

View file

@ -1,6 +1,4 @@
name: Reusable Integration Tests
permissions:
contents: read
on:
workflow_call:
@ -267,8 +265,6 @@ jobs:
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
run: uv run python ./cognee/tests/test_edge_ingestion.py
run_concurrent_subprocess_access_test:
name: Concurrent Subprocess access test
runs-on: ubuntu-latest
@ -332,50 +328,24 @@ jobs:
DB_PASSWORD: cognee
run: uv run python ./cognee/tests/test_concurrent_subprocess_access.py
run_conversation_sessions_test:
name: Conversation sessions test
runs-on: ubuntu-latest
defaults:
run:
shell: bash
services:
postgres:
image: pgvector/pgvector:pg17
env:
POSTGRES_USER: cognee
POSTGRES_PASSWORD: cognee
POSTGRES_DB: cognee_db
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
ports:
- 5432:5432
redis:
image: redis:7
ports:
- 6379:6379
options: >-
--health-cmd "redis-cli ping"
--health-interval 5s
--health-timeout 3s
--health-retries 5
test-entity-extraction:
name: Test Entity Extraction
runs-on: ubuntu-22.04
steps:
- name: Checkout repository
- name: Check out repository
uses: actions/checkout@v4
- name: Cognee Setup
uses: ./.github/actions/cognee_setup
with:
python-version: '3.11.x'
extra-dependencies: "postgres redis"
- name: Run Conversation session tests
- name: Dependencies already installed
run: echo "Dependencies already installed in setup"
- name: Run Entity Extraction Test
env:
ENV: dev
ENV: 'dev'
LLM_MODEL: ${{ secrets.LLM_MODEL }}
LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }}
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
@ -384,12 +354,4 @@ jobs:
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
GRAPH_DATABASE_PROVIDER: 'kuzu'
CACHING: true
DB_PROVIDER: 'postgres'
DB_NAME: 'cognee_db'
DB_HOST: '127.0.0.1'
DB_PORT: 5432
DB_USERNAME: cognee
DB_PASSWORD: cognee
run: uv run python ./cognee/tests/test_conversation_history.py
run: uv run python ./cognee/tests/tasks/entity_extraction/entity_extraction_test.py

View file

@ -0,0 +1,89 @@
import os
import pathlib
import asyncio
import cognee
import cognee.modules.ingestion as ingestion
from cognee.infrastructure.llm import get_max_chunk_tokens
from cognee.infrastructure.llm.extraction import extract_content_graph
from cognee.modules.chunking.TextChunker import TextChunker
from cognee.modules.data.processing.document_types import TextDocument
from cognee.modules.users.methods import get_default_user
from cognee.shared.data_models import KnowledgeGraph
from cognee.tasks.documents import extract_chunks_from_documents
from cognee.tasks.ingestion import save_data_item_to_storage
from cognee.infrastructure.files.utils.open_data_file import open_data_file
async def extract_graphs(document_chunks):
"""
Extract graph, and check if entities are present
"""
extraction_results = await asyncio.gather(
*[extract_content_graph(chunk.text, KnowledgeGraph) for chunk in document_chunks]
)
return all(
any(
term in node.name.lower()
for extraction_result in extraction_results
for node in extraction_result.nodes
)
for term in ("qubit", "algorithm", "superposition")
)
async def main():
"""
Test how well the entity extraction works. Repeat graph generation a few times.
If 80% or more graphs are correctly generated, the test passes.
"""
file_path = os.path.join(
pathlib.Path(__file__).parent.parent.parent, "test_data/Quantum_computers.txt"
)
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
await cognee.add("NLP is a subfield of computer science.")
original_file_path = await save_data_item_to_storage(file_path)
async with open_data_file(original_file_path) as file:
classified_data = ingestion.classify(file)
# data_id is the hash of original file contents + owner id to avoid duplicate data
data_id = ingestion.identify(classified_data, await get_default_user())
await cognee.add(file_path)
text_document = TextDocument(
id=data_id,
type="text",
mime_type="text/plain",
name="quantum_text",
raw_data_location=file_path,
external_metadata=None,
)
document_chunks = []
async for chunk in extract_chunks_from_documents(
[text_document], max_chunk_size=get_max_chunk_tokens(), chunker=TextChunker
):
document_chunks.append(chunk)
number_of_reps = 5
graph_results = await asyncio.gather(
*[extract_graphs(document_chunks) for _ in range(number_of_reps)]
)
correct_graphs = [result for result in graph_results if result]
assert len(correct_graphs) >= 0.8 * number_of_reps
if __name__ == "__main__":
asyncio.run(main())