feat: add kwargs to cognify and related tasks
This commit is contained in:
parent
c649900042
commit
aa8afefe8a
4 changed files with 10 additions and 5 deletions
|
|
@ -53,6 +53,7 @@ async def cognify(
|
|||
custom_prompt: Optional[str] = None,
|
||||
temporal_cognify: bool = False,
|
||||
data_per_batch: int = 20,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Transform ingested data into a structured knowledge graph.
|
||||
|
|
@ -224,6 +225,7 @@ async def cognify(
|
|||
config=config,
|
||||
custom_prompt=custom_prompt,
|
||||
chunks_per_batch=chunks_per_batch,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# By calling get pipeline executor we get a function that will have the run_pipeline run in the background or a function that we will need to wait for
|
||||
|
|
@ -251,6 +253,7 @@ async def get_default_tasks( # TODO: Find out a better way to do this (Boris's
|
|||
config: Config = None,
|
||||
custom_prompt: Optional[str] = None,
|
||||
chunks_per_batch: int = 100,
|
||||
**kwargs,
|
||||
) -> list[Task]:
|
||||
if config is None:
|
||||
ontology_config = get_ontology_env_config()
|
||||
|
|
@ -286,6 +289,7 @@ async def get_default_tasks( # TODO: Find out a better way to do this (Boris's
|
|||
config=config,
|
||||
custom_prompt=custom_prompt,
|
||||
task_config={"batch_size": chunks_per_batch},
|
||||
**kwargs,
|
||||
), # Generate knowledge graphs from the document chunks.
|
||||
Task(
|
||||
summarize_text,
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ class LLMGateway:
|
|||
|
||||
@staticmethod
|
||||
def acreate_structured_output(
|
||||
text_input: str, system_prompt: str, response_model: Type[BaseModel]
|
||||
text_input: str, system_prompt: str, response_model: Type[BaseModel], **kwargs
|
||||
) -> Coroutine:
|
||||
llm_config = get_llm_config()
|
||||
if llm_config.structured_output_framework.upper() == "BAML":
|
||||
|
|
@ -31,7 +31,7 @@ class LLMGateway:
|
|||
|
||||
llm_client = get_llm_client()
|
||||
return llm_client.acreate_structured_output(
|
||||
text_input=text_input, system_prompt=system_prompt, response_model=response_model
|
||||
text_input=text_input, system_prompt=system_prompt, response_model=response_model, **kwargs
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ from cognee.infrastructure.llm.config import (
|
|||
|
||||
|
||||
async def extract_content_graph(
|
||||
content: str, response_model: Type[BaseModel], custom_prompt: Optional[str] = None
|
||||
content: str, response_model: Type[BaseModel], custom_prompt: Optional[str] = None, **kwargs
|
||||
):
|
||||
if custom_prompt:
|
||||
system_prompt = custom_prompt
|
||||
|
|
@ -30,7 +30,7 @@ async def extract_content_graph(
|
|||
system_prompt = render_prompt(prompt_path, {}, base_directory=base_directory)
|
||||
|
||||
content_graph = await LLMGateway.acreate_structured_output(
|
||||
content, system_prompt, response_model
|
||||
content, system_prompt, response_model, **kwargs
|
||||
)
|
||||
|
||||
return content_graph
|
||||
|
|
|
|||
|
|
@ -99,6 +99,7 @@ async def extract_graph_from_data(
|
|||
graph_model: Type[BaseModel],
|
||||
config: Config = None,
|
||||
custom_prompt: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> List[DocumentChunk]:
|
||||
"""
|
||||
Extracts and integrates a knowledge graph from the text content of document chunks using a specified graph model.
|
||||
|
|
@ -113,7 +114,7 @@ async def extract_graph_from_data(
|
|||
|
||||
chunk_graphs = await asyncio.gather(
|
||||
*[
|
||||
extract_content_graph(chunk.text, graph_model, custom_prompt=custom_prompt)
|
||||
extract_content_graph(chunk.text, graph_model, custom_prompt=custom_prompt, **kwargs)
|
||||
for chunk in data_chunks
|
||||
]
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue