chore: Fixes some of the issues based on PR review + restructures things

This commit is contained in:
hajdul88 2024-11-26 14:45:48 +01:00
parent 676cdfcc84
commit a59517409c
6 changed files with 26 additions and 80 deletions

View file

@ -192,8 +192,6 @@ class PGVectorAdapter(SQLAlchemyAdapter, VectorDBInterface):
# Get PGVectorDataPoint Table from database
PGVectorDataPoint = await self.get_table(collection_name)
closest_items = []
# Use async session to connect to the database
async with self.get_async_session() as session:
# Find closest vectors to query_vector

View file

@ -164,9 +164,9 @@ class CogneeGraph(CogneeAbstractGraph):
source_node = self.get_node(edge.node1.id)
target_node = self.get_node(edge.node2.id)
source_distance = source_node.attributes.get("vector_distance", 0) if source_node else 0
target_distance = target_node.attributes.get("vector_distance", 0) if target_node else 0
edge_distance = edge.attributes.get("vector_distance", 0)
source_distance = source_node.attributes.get("vector_distance", 1) if source_node else 1
target_distance = target_node.attributes.get("vector_distance", 1) if target_node else 1
edge_distance = edge.attributes.get("vector_distance", 1)
total_distance = source_distance + target_distance + edge_distance

View file

@ -1,15 +1,11 @@
import asyncio
from uuid import UUID
from enum import Enum
from typing import Callable, Dict
from cognee.shared.utils import send_telemetry
from typing import Dict, List
from cognee.modules.users.models import User
from cognee.modules.users.methods import get_default_user
from cognee.modules.users.permissions.methods import get_document_ids_for_user
from cognee.modules.graph.cognee_graph.CogneeGraph import CogneeGraph
from cognee.infrastructure.databases.vector import get_vector_engine
from cognee.infrastructure.databases.graph import get_graph_engine
from cognee.shared.utils import send_telemetry
def format_triplets(edges):
print("\n\n\n")
@ -44,24 +40,22 @@ def format_triplets(edges):
triplet = (
f"Node1: {node1_info}\n"
f"Edge: {edge_info}\n"
f"Node2: {node2_info}\n\n\n" # Add three blank lines for separation
f"Node2: {node2_info}\n\n\n"
)
triplets.append(triplet)
return "".join(triplets)
async def two_step_retriever(query: Dict[str, str], user: User = None) -> list:
async def brute_force_triplet_search(query: str, user: User = None, top_k = 5) -> list:
if user is None:
user = await get_default_user()
if user is None:
raise PermissionError("No user found in the system. Please create a user.")
own_document_ids = await get_document_ids_for_user(user.id)
retrieved_results = await run_two_step_retriever(query, user)
retrieved_results = await brute_force_search(query, user, top_k)
filtered_search_results = []
return retrieved_results
@ -82,18 +76,22 @@ def delete_duplicated_vector_db_elements(collections, results): #:TODO: This is
return results_dict
async def run_two_step_retriever(query: str, user, community_filter = []) -> list:
async def brute_force_search(query: str, user: User, top_k: int, collections: List[str] = None) -> list:
if collections is None:
collections = ["entity_name", "text_summary_text", "entity_type_name", "document_chunk_text"]
vector_engine = get_vector_engine()
graph_engine = await get_graph_engine()
collections = ["Entity_name", "TextSummary_text", 'EntityType_name', 'DocumentChunk_text']
send_telemetry("cognee.brute_force_triplet_search EXECUTION STARTED", user.id)
results = await asyncio.gather(
*[vector_engine.get_distances_of_collection(collection, query_text=query) for collection in collections]
)
############################################# This part is a quick fix til we don't fix the vector db inconsistency
node_distances = delete_duplicated_vector_db_elements(collections, results)# :TODO: Change when vector db is fixed
# results_dict = {collection: result for collection, result in zip(collections, results)}
############################################# :TODO: Change when vector db does not contain duplicates
node_distances = delete_duplicated_vector_db_elements(collections, results)
# node_distances = {collection: result for collection, result in zip(collections, results)}
##############################################
memory_fragment = CogneeGraph()
@ -104,16 +102,16 @@ async def run_two_step_retriever(query: str, user, community_filter = []) -> lis
'name',
'type',
'text'],
edge_properties_to_project=['id',
'relationship_name'])
edge_properties_to_project=['relationship_name'])
await memory_fragment.map_vector_distances_to_graph_nodes(node_distances=node_distances)
await memory_fragment.map_vector_distances_to_graph_edges(vector_engine, query)# :TODO: This should be coming from vector db
#:TODO: Change when vectordb contains edge embeddings
await memory_fragment.map_vector_distances_to_graph_edges(vector_engine, query)
results = await memory_fragment.calculate_top_triplet_importances(k=5)
results = await memory_fragment.calculate_top_triplet_importances(k=top_k)
print(format_triplets(results))
print(f'Query was the following:{query}' )
send_telemetry("cognee.brute_force_triplet_search EXECUTION STARTED", user.id)
#:TODO: Once we have Edge pydantic models we should retrieve the exact edge and node objects from graph db
return results

View file

@ -1,25 +0,0 @@
from uuid import UUID
from enum import Enum
from typing import Callable, Dict
from cognee.shared.utils import send_telemetry
from cognee.modules.users.models import User
from cognee.modules.users.methods import get_default_user
from cognee.modules.users.permissions.methods import get_document_ids_for_user
async def two_step_retriever(query: Dict[str, str], user: User = None) -> list:
if user is None:
user = await get_default_user()
if user is None:
raise PermissionError("No user found in the system. Please create a user.")
own_document_ids = await get_document_ids_for_user(user.id)
retrieved_results = await diffusion_retriever(query, user)
filtered_search_results = []
return retrieved_results
async def diffusion_retriever(query: str, user, community_filter = []) -> list:
raise(NotImplementedError)

View file

@ -1,25 +0,0 @@
from uuid import UUID
from enum import Enum
from typing import Callable, Dict
from cognee.shared.utils import send_telemetry
from cognee.modules.users.models import User
from cognee.modules.users.methods import get_default_user
from cognee.modules.users.permissions.methods import get_document_ids_for_user
async def two_step_retriever(query: Dict[str, str], user: User = None) -> list:
if user is None:
user = await get_default_user()
if user is None:
raise PermissionError("No user found in the system. Please create a user.")
own_document_ids = await get_document_ids_for_user(user.id)
retrieved_results = await g_retriever(query, user)
filtered_search_results = []
return retrieved_results
async def g_retriever(query: str, user, community_filter = []) -> list:
raise(NotImplementedError)

View file

@ -1,6 +1,6 @@
import cognee
import asyncio
from cognee.pipelines.retriever.two_steps_retriever import two_step_retriever
from cognee.pipelines.retriever.brute_force_triplet_search import brute_force_triplet_search
job_1 = """
CV 1: Relevant
@ -181,13 +181,13 @@ async def main(enable_steps):
# Step 4: Query insights
if enable_steps.get("retriever"):
await two_step_retriever('Who has Phd?')
await brute_force_triplet_search('Who has Phd?')
if __name__ == '__main__':
# Flags to enable/disable steps
rebuild_kg = True
rebuild_kg = False
retrieve = True
steps_to_enable = {
"prune_data": rebuild_kg,