From a0d5102bd8a704b5075c2e51fa27ddcdbb59e97e Mon Sep 17 00:00:00 2001 From: Rita Aleksziev Date: Tue, 3 Dec 2024 17:22:23 +0100 Subject: [PATCH] add some spaces for readability --- evals/llm_as_a_judge.py | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/evals/llm_as_a_judge.py b/evals/llm_as_a_judge.py index c84795642..4deee7d7d 100644 --- a/evals/llm_as_a_judge.py +++ b/evals/llm_as_a_judge.py @@ -37,8 +37,10 @@ async def answer_without_cognee(instance): async def answer_with_cognee(instance): await cognee.prune.prune_data() await cognee.prune.prune_system(metadata=True) + for (title, sentences) in instance["context"]: await cognee.add("\n".join(sentences), dataset_name = "HotPotQA") + await cognee.cognify("HotPotQA") search_results = await cognee.search( @@ -58,11 +60,13 @@ async def answer_with_cognee(instance): system_prompt=system_prompt, response_model=str, ) + return answer_prediction async def eval_answers(instances, answers, eval_metric): test_cases = [] + for instance, answer in zip(instances, answers): test_case = LLMTestCase( input=instance["question"], @@ -70,19 +74,24 @@ async def eval_answers(instances, answers, eval_metric): expected_output=instance["answer"] ) test_cases.append(test_case) + eval_set = EvaluationDataset(test_cases) eval_results = eval_set.evaluate([eval_metric]) + return eval_results async def eval_on_hotpotQA(answer_provider, num_samples, eval_metric): base_config = get_base_config() data_root_dir = base_config.data_root_directory + if not Path(data_root_dir).exists(): Path(data_root_dir).mkdir() + filepath = data_root_dir / Path("hotpot_dev_fullwiki_v1.json") if not filepath.exists(): url = 'http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_dev_fullwiki_v1.json' wget.download(url, out=data_root_dir) + with open(filepath, "r") as file: dataset = json.load(file) @@ -91,15 +100,19 @@ async def eval_on_hotpotQA(answer_provider, num_samples, eval_metric): for instance in tqdm(instances, desc="Getting answers"): answer = await answer_provider(instance) answers.append(answer) + eval_results = await eval_answers(instances, answers, eval_metric) avg_score = statistics.mean([result.metrics_data[0].score for result in eval_results.test_results]) + return avg_score if __name__ == "__main__": parser = argparse.ArgumentParser() + parser.add_argument("--with_cognee", action="store_true") parser.add_argument("--num_samples", type=int, default=500) parser.add_argument("--metric", type=str, default="correctness_metric") + args = parser.parse_args() try: @@ -107,9 +120,11 @@ if __name__ == "__main__": metric = metric_cls() except AttributeError: metric = getattr(evals.deepeval_metrics, args.metric) + if args.with_cognee: answer_provider = answer_with_cognee else: answer_provider = answer_without_cognee + avg_score = asyncio.run(eval_on_hotpotQA(answer_provider, args.num_samples, metric)) print(f"Average {args.metric}: {avg_score}") \ No newline at end of file