Update README with usage and installation details
Added section on using Cognee and installation instructions.
This commit is contained in:
parent
7620f46820
commit
99efc0b2b9
1 changed files with 33 additions and 29 deletions
62
README.md
62
README.md
|
|
@ -87,17 +87,22 @@ Get started quickly with a Google Colab <a href="https://colab.research.google.
|
|||
## Contributing
|
||||
Your contributions are at the core of making this a true open source project. Any contributions you make are **greatly appreciated**. See [`CONTRIBUTING.md`](CONTRIBUTING.md) for more information.
|
||||
|
||||
## Using cognee
|
||||
|
||||
Start with our self-hosted package and UI and deploy it to our hosted solution with one click once you want to move to production.
|
||||
|
||||
|
||||
|
||||
## Self-Hosted (Open Source)
|
||||
|
||||
## 📦 Installation
|
||||
|
||||
### 📦 Installation
|
||||
|
||||
You can install Cognee using either **pip**, **poetry**, **uv** or any other python package manager.
|
||||
|
||||
Cognee supports Python 3.10 to 3.12
|
||||
|
||||
### With uv
|
||||
#### With uv
|
||||
|
||||
```bash
|
||||
uv pip install cognee
|
||||
|
|
@ -105,9 +110,9 @@ uv pip install cognee
|
|||
|
||||
Detailed instructions can be found in our [docs](https://docs.cognee.ai/getting-started/installation#environment-configuration)
|
||||
|
||||
## 💻 Basic Usage
|
||||
### 💻 Basic Usage
|
||||
|
||||
### Setup
|
||||
#### Setup
|
||||
|
||||
```
|
||||
import os
|
||||
|
|
@ -119,10 +124,10 @@ You can also set the variables by creating .env file, using our <a href="https:/
|
|||
To use different LLM providers, for more info check out our <a href="https://docs.cognee.ai/setup-configuration/llm-providers">documentation</a>
|
||||
|
||||
|
||||
### Simple example
|
||||
#### Simple example
|
||||
|
||||
|
||||
#### Via CLI
|
||||
##### Via CLI
|
||||
|
||||
These commands will show you the basics of cognee CLI
|
||||
|
||||
|
|
@ -134,9 +139,13 @@ cognee-cli cognify
|
|||
cognee-cli search "What does cognee do?"
|
||||
cognee-cli delete --all
|
||||
|
||||
```
|
||||
or run
|
||||
```
|
||||
cognee-cli -ui
|
||||
```
|
||||
|
||||
#### Python
|
||||
##### Python
|
||||
|
||||
This script will run the default pipeline:
|
||||
|
||||
|
|
@ -173,29 +182,18 @@ Example output:
|
|||
|
||||
```
|
||||
|
||||
## Our paper is out! <a href="https://arxiv.org/abs/2505.24478" target="_blank" rel="noopener noreferrer">Read here</a>
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="assets/cognee-paper.png" alt="cognee paper" width="100%" />
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
## Cognee UI
|
||||
|
||||
You can also cognify your files and query using cognee UI.
|
||||
### Hosted Platform
|
||||
|
||||
<img src="assets/cognee-new-ui.webp" width="100%" alt="Cognee UI 2"></a>
|
||||
Get up and running in minutes with automatic updates, analytics, and enterprise security.
|
||||
|
||||
### Running the UI
|
||||
1. Sign up on [cogwit](https://www.cognee.ai)
|
||||
2. Add your API key to local UI and sync your data or send your data to Cogwit API
|
||||
|
||||
Try cognee UI by setting your LLM_API_KEY and running ``` cognee-cli -ui ``` command on your terminal.
|
||||
|
||||
## Understand our architecture
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="assets/cognee_diagram.png" alt="cognee concept diagram" width="100%" />
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
|
@ -224,12 +222,18 @@ We are committed to making open source an enjoyable and respectful experience fo
|
|||
<img alt="contributors" src="https://contrib.rocks/image?repo=topoteretes/cognee"/>
|
||||
</a>
|
||||
|
||||
## Sponsors
|
||||
## Citation
|
||||
|
||||
Thanks to the following companies for sponsoring the ongoing development of cognee.
|
||||
We now have a paper you can cite:
|
||||
|
||||
- [GitHub's Secure Open Source Fund](https://resources.github.com/github-secure-open-source-fund/)
|
||||
|
||||
## Star History
|
||||
|
||||
[](https://star-history.com/#topoteretes/cognee&Date)
|
||||
```bibtex
|
||||
@misc{markovic2025optimizinginterfaceknowledgegraphs,
|
||||
title={Optimizing the Interface Between Knowledge Graphs and LLMs for Complex Reasoning},
|
||||
author={Vasilije Markovic and Lazar Obradovic and Laszlo Hajdu and Jovan Pavlovic},
|
||||
year={2025},
|
||||
eprint={2505.24478},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.AI},
|
||||
url={https://arxiv.org/abs/2505.24478},
|
||||
}
|
||||
```
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue