feat: adds basic retriever for swe bench
This commit is contained in:
parent
56cc223302
commit
9604d95ba5
3 changed files with 49 additions and 39 deletions
|
|
@ -10,7 +10,7 @@ from cognee.modules.users.models import User
|
|||
from cognee.shared.utils import send_telemetry
|
||||
|
||||
|
||||
async def code_description_to_code_part_search(query: str, user: User = None, top_k=2) -> list:
|
||||
async def code_description_to_code_part_search(query: str, user: User = None, top_k=5) -> list:
|
||||
if user is None:
|
||||
user = await get_default_user()
|
||||
|
||||
|
|
@ -55,21 +55,23 @@ async def code_description_to_code_part(query: str, user: User, top_k: int) -> L
|
|||
)
|
||||
|
||||
try:
|
||||
results = await vector_engine.search("code_summary_text", query_text=query, limit=top_k)
|
||||
if not results:
|
||||
code_summaries = await vector_engine.search(
|
||||
"code_summary_text", query_text=query, limit=top_k
|
||||
)
|
||||
if not code_summaries:
|
||||
logging.warning("No results found for query: '%s' by user: %s", query, user.id)
|
||||
return []
|
||||
|
||||
memory_fragment = CogneeGraph()
|
||||
await memory_fragment.project_graph_from_db(
|
||||
graph_engine,
|
||||
node_properties_to_project=["id", "type", "text", "source_code"],
|
||||
node_properties_to_project=["id", "type", "text", "source_code", "pydantic_type"],
|
||||
edge_properties_to_project=["relationship_name"],
|
||||
)
|
||||
|
||||
code_pieces_to_return = set()
|
||||
|
||||
for node in results:
|
||||
for node in code_summaries:
|
||||
node_id = str(node.id)
|
||||
node_to_search_from = memory_fragment.get_node(node_id)
|
||||
|
||||
|
|
@ -78,6 +80,13 @@ async def code_description_to_code_part(query: str, user: User, top_k: int) -> L
|
|||
continue
|
||||
|
||||
for code_file in node_to_search_from.get_skeleton_neighbours():
|
||||
if code_file.get_attribute("pydantic_type") == "SourceCodeChunk":
|
||||
for code_file_edge in code_file.get_skeleton_edges():
|
||||
if code_file_edge.get_attribute("relationship_name") == "code_chunk_of":
|
||||
code_pieces_to_return.add(code_file_edge.get_destination_node())
|
||||
elif code_file.get_attribute("pydantic_type") == "CodePart":
|
||||
code_pieces_to_return.add(code_file)
|
||||
elif code_file.get_attribute("pydantic_type") == "CodeFile":
|
||||
for code_file_edge in code_file.get_skeleton_edges():
|
||||
if code_file_edge.get_attribute("relationship_name") == "contains":
|
||||
code_pieces_to_return.add(code_file_edge.get_destination_node())
|
||||
|
|
@ -89,7 +98,11 @@ async def code_description_to_code_part(query: str, user: User, top_k: int) -> L
|
|||
len(code_pieces_to_return),
|
||||
)
|
||||
|
||||
return list(code_pieces_to_return)
|
||||
context = ""
|
||||
for code_piece in code_pieces_to_return:
|
||||
context = context + code_piece.get_attribute("source_code")
|
||||
|
||||
return context
|
||||
|
||||
except Exception as exec_error:
|
||||
logging.error(
|
||||
|
|
|
|||
|
|
@ -231,6 +231,7 @@ class SummarizedContent(BaseModel):
|
|||
|
||||
summary: str
|
||||
description: str
|
||||
pydantic_type: str = "SummarizedContent"
|
||||
|
||||
|
||||
class SummarizedFunction(BaseModel):
|
||||
|
|
@ -239,6 +240,7 @@ class SummarizedFunction(BaseModel):
|
|||
inputs: Optional[List[str]] = None
|
||||
outputs: Optional[List[str]] = None
|
||||
decorators: Optional[List[str]] = None
|
||||
pydantic_type: str = "SummarizedFunction"
|
||||
|
||||
|
||||
class SummarizedClass(BaseModel):
|
||||
|
|
@ -246,6 +248,7 @@ class SummarizedClass(BaseModel):
|
|||
description: str
|
||||
methods: Optional[List[SummarizedFunction]] = None
|
||||
decorators: Optional[List[str]] = None
|
||||
pydantic_type: str = "SummarizedClass"
|
||||
|
||||
|
||||
class SummarizedCode(BaseModel):
|
||||
|
|
@ -256,6 +259,7 @@ class SummarizedCode(BaseModel):
|
|||
classes: List[SummarizedClass] = []
|
||||
functions: List[SummarizedFunction] = []
|
||||
workflow_description: Optional[str] = None
|
||||
pydantic_type: str = "SummarizedCode"
|
||||
|
||||
|
||||
class GraphDBType(Enum):
|
||||
|
|
|
|||
|
|
@ -11,7 +11,9 @@ from cognee.api.v1.cognify.code_graph_pipeline import run_code_graph_pipeline
|
|||
from cognee.api.v1.search import SearchType
|
||||
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
||||
from cognee.infrastructure.llm.prompts import read_query_prompt
|
||||
from cognee.modules.retrieval.brute_force_triplet_search import brute_force_triplet_search
|
||||
from cognee.modules.retrieval.description_to_codepart_search import (
|
||||
code_description_to_code_part_search,
|
||||
)
|
||||
from cognee.shared.utils import render_graph
|
||||
from evals.eval_utils import download_github_repo, retrieved_edges_to_string
|
||||
|
||||
|
|
@ -32,26 +34,16 @@ def check_install_package(package_name):
|
|||
return False
|
||||
|
||||
|
||||
async def generate_patch_with_cognee(instance, llm_client, search_type=SearchType.CHUNKS):
|
||||
repo_path = download_github_repo(instance, "../RAW_GIT_REPOS")
|
||||
|
||||
async for result in run_code_graph_pipeline(repo_path, include_docs=True):
|
||||
print(result)
|
||||
|
||||
print("Here we have the repo under the repo_path")
|
||||
|
||||
await render_graph(None, include_labels=True, include_nodes=True)
|
||||
|
||||
async def generate_patch_with_cognee(instance):
|
||||
"""repo_path = download_github_repo(instance, "../RAW_GIT_REPOS")"""
|
||||
problem_statement = instance["problem_statement"]
|
||||
instructions = read_query_prompt("patch_gen_kg_instructions.txt")
|
||||
|
||||
retrieved_edges = await brute_force_triplet_search(
|
||||
problem_statement,
|
||||
top_k=3,
|
||||
collections=["code_summary_text"],
|
||||
)
|
||||
repo_path = "/Users/laszlohajdu/Documents/GitHub/test/"
|
||||
async for result in run_code_graph_pipeline(repo_path, include_docs=False):
|
||||
print(result)
|
||||
|
||||
retrieved_edges_str = retrieved_edges_to_string(retrieved_edges)
|
||||
retrieved_codeparts = await code_description_to_code_part_search(problem_statement)
|
||||
|
||||
prompt = "\n".join(
|
||||
[
|
||||
|
|
@ -60,7 +52,7 @@ async def generate_patch_with_cognee(instance, llm_client, search_type=SearchTyp
|
|||
PATCH_EXAMPLE,
|
||||
"</patch>",
|
||||
"These are the retrieved edges:",
|
||||
retrieved_edges_str,
|
||||
retrieved_codeparts,
|
||||
]
|
||||
)
|
||||
|
||||
|
|
@ -86,8 +78,6 @@ async def generate_patch_without_cognee(instance, llm_client):
|
|||
|
||||
|
||||
async def get_preds(dataset, with_cognee=True):
|
||||
llm_client = get_llm_client()
|
||||
|
||||
if with_cognee:
|
||||
model_name = "with_cognee"
|
||||
pred_func = generate_patch_with_cognee
|
||||
|
|
@ -95,17 +85,18 @@ async def get_preds(dataset, with_cognee=True):
|
|||
model_name = "without_cognee"
|
||||
pred_func = generate_patch_without_cognee
|
||||
|
||||
futures = [(instance["instance_id"], pred_func(instance, llm_client)) for instance in dataset]
|
||||
model_patches = await asyncio.gather(*[x[1] for x in futures])
|
||||
preds = []
|
||||
|
||||
preds = [
|
||||
for instance in dataset:
|
||||
instance_id = instance["instance_id"]
|
||||
model_patch = await pred_func(instance) # Sequentially await the async function
|
||||
preds.append(
|
||||
{
|
||||
"instance_id": instance_id,
|
||||
"model_patch": model_patch,
|
||||
"model_name_or_path": model_name,
|
||||
}
|
||||
for (instance_id, _), model_patch in zip(futures, model_patches)
|
||||
]
|
||||
)
|
||||
|
||||
return preds
|
||||
|
||||
|
|
@ -135,6 +126,7 @@ async def main():
|
|||
with open(predictions_path, "w") as file:
|
||||
json.dump(preds, file)
|
||||
|
||||
""" This part is for the evaluation
|
||||
subprocess.run(
|
||||
[
|
||||
"python",
|
||||
|
|
@ -152,6 +144,7 @@ async def main():
|
|||
"test_run",
|
||||
]
|
||||
)
|
||||
"""
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue