feat/connect code graph pipeline to benchmarking
This commit is contained in:
parent
6339295d6b
commit
8edfe7c5a4
1 changed files with 37 additions and 32 deletions
|
|
@ -8,26 +8,35 @@ from swebench.harness.utils import load_swebench_dataset
|
|||
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
|
||||
|
||||
import cognee
|
||||
|
||||
from cognee.shared.data_models import SummarizedContent
|
||||
from cognee.shared.utils import render_graph
|
||||
from cognee.tasks.repo_processor import (
|
||||
enrich_dependency_graph,
|
||||
expand_dependency_graph,
|
||||
get_repo_file_dependencies,
|
||||
)
|
||||
from cognee.tasks.storage import add_data_points
|
||||
from cognee.tasks.summarization import summarize_code
|
||||
from cognee.modules.pipelines import Task, run_tasks
|
||||
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
|
||||
from cognee.api.v1.search import SearchType
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
||||
from cognee.infrastructure.llm.prompts import read_query_prompt
|
||||
from evals.eval_utils import download_instances
|
||||
from evals.eval_utils import ingest_repos
|
||||
from evals.eval_utils import download_github_repo
|
||||
from evals.eval_utils import delete_repo
|
||||
from cognee.modules.pipelines import Task, run_tasks
|
||||
from cognee.modules.retrieval.brute_force_triplet_search import \
|
||||
brute_force_triplet_search
|
||||
from cognee.shared.data_models import SummarizedContent
|
||||
from cognee.shared.utils import render_graph
|
||||
from cognee.tasks.repo_processor import (enrich_dependency_graph,
|
||||
expand_dependency_graph,
|
||||
get_repo_file_dependencies)
|
||||
from cognee.tasks.storage import add_data_points
|
||||
from cognee.tasks.summarization import summarize_code
|
||||
from evals.eval_utils import (delete_repo, download_github_repo,
|
||||
download_instances, ingest_repos)
|
||||
|
||||
|
||||
def node_to_string(node):
|
||||
text = node.attributes["text"]
|
||||
return f"Node({node.id}, {text})"
|
||||
def retrieved_edges_to_string(retrieved_edges):
|
||||
edge_strings = []
|
||||
for edge in retrieved_edges:
|
||||
relationship_type = edge.attributes["relationship_type"]
|
||||
edge_str = f"{node_to_string(edge.node1)} {relationship_type} {node_to_string(edge.node2)}"
|
||||
edge_strings.append(edge_str)
|
||||
return "\n".join(edge_strings)
|
||||
|
||||
async def generate_patch_with_cognee(instance):
|
||||
await cognee.prune.prune_data()
|
||||
|
|
@ -39,19 +48,18 @@ async def generate_patch_with_cognee(instance):
|
|||
|
||||
# repo_path = download_github_repo(instance, '../RAW_GIT_REPOS')
|
||||
|
||||
repo_path = '/Users/borisarzentar/Projects/graphrag'
|
||||
|
||||
repo_path = '../minimal_repo'
|
||||
tasks = [
|
||||
Task(get_repo_file_dependencies),
|
||||
Task(add_data_points, task_config = { "batch_size": 50 }),
|
||||
Task(enrich_dependency_graph, task_config = { "batch_size": 50 }),
|
||||
Task(expand_dependency_graph, task_config = { "batch_size": 50 }),
|
||||
Task(add_data_points, task_config = { "batch_size": 50 }),
|
||||
# Task(summarize_code, summarization_model = SummarizedContent),
|
||||
Task(summarize_code, summarization_model = SummarizedContent),
|
||||
]
|
||||
|
||||
pipeline = run_tasks(tasks, repo_path, "cognify_code_pipeline")
|
||||
|
||||
|
||||
async for result in pipeline:
|
||||
print(result)
|
||||
|
||||
|
|
@ -62,29 +70,27 @@ async def generate_patch_with_cognee(instance):
|
|||
problem_statement = instance['problem_statement']
|
||||
instructions = read_query_prompt("patch_gen_instructions.txt")
|
||||
|
||||
graph_str = 'HERE WE SHOULD PASS THE TRIPLETS FROM GRAPHRAG'
|
||||
retrieved_edges = await brute_force_triplet_search(problem_statement, top_k = 3)
|
||||
|
||||
retrieved_edges_str = retrieved_edges_to_string(retrieved_edges)
|
||||
|
||||
prompt = "\n".join([
|
||||
instructions,
|
||||
"<patch>",
|
||||
PATCH_EXAMPLE,
|
||||
"</patch>",
|
||||
"This is the knowledge graph:",
|
||||
graph_str
|
||||
"These are the retrieved edges:",
|
||||
retrieved_edges_str
|
||||
])
|
||||
|
||||
return 0
|
||||
|
||||
''' :TODO: We have to find out how do we do the generation
|
||||
llm_client = get_llm_client()
|
||||
answer_prediction = await llm_client.acreate_structured_output(
|
||||
text_input=problem_statement,
|
||||
system_prompt=prompt,
|
||||
text_input=prompt,
|
||||
system_prompt=instructions,
|
||||
response_model=str,
|
||||
)
|
||||
|
||||
return answer_prediction
|
||||
'''
|
||||
|
||||
|
||||
async def generate_patch_without_cognee(instance):
|
||||
problem_statement = instance['problem_statement']
|
||||
|
|
@ -111,12 +117,11 @@ async def get_preds(dataset, with_cognee=True):
|
|||
for instance in dataset:
|
||||
await pred_func(instance)
|
||||
|
||||
'''
|
||||
preds = [{"instance_id": instance["instance_id"],
|
||||
"model_patch": await pred_func(instance),
|
||||
"model_name_or_path": model_name} for instance in dataset]
|
||||
'''
|
||||
return 0
|
||||
|
||||
return preds
|
||||
|
||||
|
||||
async def main():
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue