feat/connect code graph pipeline to benchmarking

This commit is contained in:
Rita Aleksziev 2024-11-28 16:52:54 +01:00
parent 6339295d6b
commit 8edfe7c5a4

View file

@ -8,26 +8,35 @@ from swebench.harness.utils import load_swebench_dataset
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
import cognee
from cognee.shared.data_models import SummarizedContent
from cognee.shared.utils import render_graph
from cognee.tasks.repo_processor import (
enrich_dependency_graph,
expand_dependency_graph,
get_repo_file_dependencies,
)
from cognee.tasks.storage import add_data_points
from cognee.tasks.summarization import summarize_code
from cognee.modules.pipelines import Task, run_tasks
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
from cognee.api.v1.search import SearchType
from cognee.infrastructure.databases.graph import get_graph_engine
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt
from evals.eval_utils import download_instances
from evals.eval_utils import ingest_repos
from evals.eval_utils import download_github_repo
from evals.eval_utils import delete_repo
from cognee.modules.pipelines import Task, run_tasks
from cognee.modules.retrieval.brute_force_triplet_search import \
brute_force_triplet_search
from cognee.shared.data_models import SummarizedContent
from cognee.shared.utils import render_graph
from cognee.tasks.repo_processor import (enrich_dependency_graph,
expand_dependency_graph,
get_repo_file_dependencies)
from cognee.tasks.storage import add_data_points
from cognee.tasks.summarization import summarize_code
from evals.eval_utils import (delete_repo, download_github_repo,
download_instances, ingest_repos)
def node_to_string(node):
text = node.attributes["text"]
return f"Node({node.id}, {text})"
def retrieved_edges_to_string(retrieved_edges):
edge_strings = []
for edge in retrieved_edges:
relationship_type = edge.attributes["relationship_type"]
edge_str = f"{node_to_string(edge.node1)} {relationship_type} {node_to_string(edge.node2)}"
edge_strings.append(edge_str)
return "\n".join(edge_strings)
async def generate_patch_with_cognee(instance):
await cognee.prune.prune_data()
@ -39,19 +48,18 @@ async def generate_patch_with_cognee(instance):
# repo_path = download_github_repo(instance, '../RAW_GIT_REPOS')
repo_path = '/Users/borisarzentar/Projects/graphrag'
repo_path = '../minimal_repo'
tasks = [
Task(get_repo_file_dependencies),
Task(add_data_points, task_config = { "batch_size": 50 }),
Task(enrich_dependency_graph, task_config = { "batch_size": 50 }),
Task(expand_dependency_graph, task_config = { "batch_size": 50 }),
Task(add_data_points, task_config = { "batch_size": 50 }),
# Task(summarize_code, summarization_model = SummarizedContent),
Task(summarize_code, summarization_model = SummarizedContent),
]
pipeline = run_tasks(tasks, repo_path, "cognify_code_pipeline")
async for result in pipeline:
print(result)
@ -62,29 +70,27 @@ async def generate_patch_with_cognee(instance):
problem_statement = instance['problem_statement']
instructions = read_query_prompt("patch_gen_instructions.txt")
graph_str = 'HERE WE SHOULD PASS THE TRIPLETS FROM GRAPHRAG'
retrieved_edges = await brute_force_triplet_search(problem_statement, top_k = 3)
retrieved_edges_str = retrieved_edges_to_string(retrieved_edges)
prompt = "\n".join([
instructions,
"<patch>",
PATCH_EXAMPLE,
"</patch>",
"This is the knowledge graph:",
graph_str
"These are the retrieved edges:",
retrieved_edges_str
])
return 0
''' :TODO: We have to find out how do we do the generation
llm_client = get_llm_client()
answer_prediction = await llm_client.acreate_structured_output(
text_input=problem_statement,
system_prompt=prompt,
text_input=prompt,
system_prompt=instructions,
response_model=str,
)
return answer_prediction
'''
async def generate_patch_without_cognee(instance):
problem_statement = instance['problem_statement']
@ -111,12 +117,11 @@ async def get_preds(dataset, with_cognee=True):
for instance in dataset:
await pred_func(instance)
'''
preds = [{"instance_id": instance["instance_id"],
"model_patch": await pred_func(instance),
"model_name_or_path": model_name} for instance in dataset]
'''
return 0
return preds
async def main():