Delete cognee/modules/cognify/train.py

This commit is contained in:
Vasilije 2024-11-14 14:49:34 +01:00 committed by GitHub
parent cf09a5ea37
commit 8e9040815f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -1,68 +0,0 @@
import dspy
from dspy.teleprompt import BootstrapFewShot
from dspy.primitives.example import Example
from cognee.modules.data.extraction.knowledge_graph.extract_knowledge_graph import ExtractKnowledgeGraph
from cognee.root_dir import get_absolute_path
from cognee.infrastructure.files.storage import LocalStorage
from cognee.shared.data_models import Answer
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.modules.cognify.dataset import HotPotQA
from cognee.infrastructure.llm import get_llm_config
def train():
colbertv2_wiki17_abstracts = dspy.ColBERTv2(url = "http://20.102.90.50:2017/wiki17_abstracts")
dspy.configure(rm = colbertv2_wiki17_abstracts)
def evaluate_answer(example, graph_prediction, trace = None):
llm_client = get_llm_client()
try:
answer_prediction = llm_client.create_structured_output(
text_input = example.question,
system_prompt = f"""Answer the question by looking at the provided knowledge graph.
Use only the graph to answer the question and be very brief.
This is the knowledge graph:
{graph_prediction.graph.model_dump(mode = "json")}""",
response_model = Answer,
)
except:
return False
return dsp.answer_match(example.answer, [answer_prediction.answer], frac = 0.8) or \
dsp.passage_match([example.answer], [answer_prediction.answer])
optimizer = BootstrapFewShot(metric = evaluate_answer)
dataset = HotPotQA(
train_seed = 1,
train_size = 16,
eval_seed = 2023,
dev_size = 8,
test_size = 0,
keep_details = True,
)
# Train
train_examples = [
Example(
base = None,
question = example.question,
context = "\r\n".join("".join(sentences) for sentences in example.context["sentences"]),
answer = example.answer,
) for example in dataset.train
]
trainset = [example.with_inputs("context", "question") for example in train_examples]
llm_config = get_llm_config()
gpt4 = dspy.OpenAI(model = llm_config.llm_model, api_key = llm_config.llm_api_key, model_type = "chat", max_tokens = 4096)
compiled_extract_knowledge_graph = optimizer.compile(ExtractKnowledgeGraph(lm = gpt4), trainset = trainset)
# Save program
LocalStorage.ensure_directory_exists(get_absolute_path("./programs/extract_knowledge_graph"))
compiled_extract_knowledge_graph.save(get_absolute_path("./programs/extract_knowledge_graph/extract_knowledge_graph.json"))
if __name__ == "__main__":
train()