Merge branch 'dev' into enable-multi-user-mode-default

This commit is contained in:
Igor Ilic 2025-10-30 14:20:30 +01:00 committed by GitHub
commit 8d4eed6101
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
24 changed files with 486 additions and 272 deletions

View file

@ -243,13 +243,14 @@ LITELLM_LOG="ERROR"
########## Local LLM via Ollama ###############################################
#LLM_API_KEY ="ollama"
#LLM_MODEL="llama3.1:8b"
#LLM_PROVIDER="ollama"
#LLM_ENDPOINT="http://localhost:11434/v1"
#EMBEDDING_PROVIDER="ollama"
#EMBEDDING_MODEL="nomic-embed-text:latest"
#EMBEDDING_ENDPOINT="http://localhost:11434/api/embeddings"
#EMBEDDING_ENDPOINT="http://localhost:11434/api/embed"
#EMBEDDING_DIMENSIONS=768
#HUGGINGFACE_TOKENIZER="nomic-ai/nomic-embed-text-v1.5"

View file

@ -7,14 +7,29 @@ on:
jobs:
docker-build-and-push:
runs-on: ubuntu-latest
runs-on:
group: Default
labels:
- docker_build_runner
steps:
- name: Check and free disk space before build
run: |
echo "=== Before cleanup ==="
df -h
echo "Removing unused preinstalled SDKs to free space..."
sudo rm -rf /usr/share/dotnet /usr/local/lib/android /opt/ghc || true
docker system prune -af || true
echo "=== After cleanup ==="
df -h
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
buildkitd-flags: --root /tmp/buildkit
- name: Log in to Docker Hub
uses: docker/login-action@v3
@ -34,7 +49,7 @@ jobs:
- name: Build and push
id: build
uses: docker/build-push-action@v5
uses: docker/build-push-action@v6
with:
context: .
platforms: linux/amd64,linux/arm64
@ -45,5 +60,6 @@ jobs:
cache-from: type=registry,ref=cognee/cognee-mcp:buildcache
cache-to: type=registry,ref=cognee/cognee-mcp:buildcache,mode=max
- name: Image digest
run: echo ${{ steps.build.outputs.digest }}

132
AGENTS.md Normal file
View file

@ -0,0 +1,132 @@
## Repository Guidelines
This document summarizes how to work with the cognee repository: how its organized, how to build, test, lint, and contribute. It mirrors our actual tooling and CI while providing quick commands for local development.
## Project Structure & Module Organization
- `cognee/`: Core Python library and API.
- `api/`: FastAPI application and versioned routers (add, cognify, memify, search, delete, users, datasets, responses, visualize, settings, sync, update, checks).
- `cli/`: CLI entry points and subcommands invoked via `cognee` / `cognee-cli`.
- `infrastructure/`: Databases, LLM providers, embeddings, loaders, and storage adapters.
- `modules/`: Domain logic (graph, retrieval, ontology, users, processing, observability, etc.).
- `tasks/`: Reusable tasks (e.g., code graph, web scraping, storage). Extend with new tasks here.
- `eval_framework/`: Evaluation utilities and adapters.
- `shared/`: Cross-cutting helpers (logging, settings, utils).
- `tests/`: Unit, integration, CLI, and end-to-end tests organized by feature.
- `__main__.py`: Entrypoint to route to CLI.
- `cognee-mcp/`: Model Context Protocol server exposing cognee as MCP tools (SSE/HTTP/stdio). Contains its own README and Dockerfile.
- `cognee-frontend/`: Next.js UI for local development and demos.
- `distributed/`: Utilities for distributed execution (Modal, workers, queues).
- `examples/`: Example scripts demonstrating the public APIs and features (graph, code graph, multimodal, permissions, etc.).
- `notebooks/`: Jupyter notebooks for demos and tutorials.
- `alembic/`: Database migrations for relational backends.
Notes:
- Co-locate feature-specific helpers under their respective package (`modules/`, `infrastructure/`, or `tasks/`).
- Extend the system by adding new tasks, loaders, or retrievers rather than modifying core pipeline mechanisms.
## Build, Test, and Development Commands
Python (root) requires Python >= 3.10 and < 3.14. We recommend `uv` for speed and reproducibility.
- Create/refresh env and install dev deps:
```bash
uv sync --dev --all-extras --reinstall
```
- Run the CLI (examples):
```bash
uv run cognee-cli add "Cognee turns documents into AI memory."
uv run cognee-cli cognify
uv run cognee-cli search "What does cognee do?"
uv run cognee-cli -ui # Launches UI, backend API, and MCP server together
```
- Start the FastAPI server directly:
```bash
uv run python -m cognee.api.client
```
- Run tests (CI mirrors these commands):
```bash
uv run pytest cognee/tests/unit/ -v
uv run pytest cognee/tests/integration/ -v
```
- Lint and format (ruff):
```bash
uv run ruff check .
uv run ruff format .
```
- Optional static type checks (mypy):
```bash
uv run mypy cognee/
```
MCP Server (`cognee-mcp/`):
- Install and run locally:
```bash
cd cognee-mcp
uv sync --dev --all-extras --reinstall
uv run python src/server.py # stdio (default)
uv run python src/server.py --transport sse
uv run python src/server.py --transport http --host 127.0.0.1 --port 8000 --path /mcp
```
- API Mode (connect to a running Cognee API):
```bash
uv run python src/server.py --transport sse --api-url http://localhost:8000 --api-token YOUR_TOKEN
```
- Docker quickstart (examples): see `cognee-mcp/README.md` for full details
```bash
docker run -e TRANSPORT_MODE=http --env-file ./.env -p 8000:8000 --rm -it cognee/cognee-mcp:main
```
Frontend (`cognee-frontend/`):
```bash
cd cognee-frontend
npm install
npm run dev # Next.js dev server
npm run lint # ESLint
npm run build && npm start
```
## Coding Style & Naming Conventions
Python:
- 4-space indentation, modules and functions in `snake_case`, classes in `PascalCase`.
- Public APIs should be type-annotated where practical.
- Use `ruff format` before committing; `ruff check` enforces import hygiene and style (line-length 100 configured in `pyproject.toml`).
- Prefer explicit, structured error handling. Use shared logging utilities in `cognee.shared.logging_utils`.
MCP server and Frontend:
- Follow the local `README.md` and ESLint/TypeScript configuration in `cognee-frontend/`.
## Testing Guidelines
- Place Python tests under `cognee/tests/`.
- Unit tests: `cognee/tests/unit/`
- Integration tests: `cognee/tests/integration/`
- CLI tests: `cognee/tests/cli_tests/`
- Name test files `test_*.py`. Use `pytest.mark.asyncio` for async tests.
- Avoid external state; rely on test fixtures and the CI-provided env vars when LLM/embedding providers are required. See CI workflows under `.github/workflows/` for expected environment variables.
- When adding public APIs, provide/update targeted examples under `examples/python/`.
## Commit & Pull Request Guidelines
- Use clear, imperative subjects (≤ 72 chars) and conventional commit styling in PR titles. Our CI validates semantic PR titles (see `.github/workflows/pr_lint`). Examples:
- `feat(graph): add temporal edge weighting`
- `fix(api): handle missing auth cookie`
- `docs: update installation instructions`
- Reference related issues/discussions in the PR body and provide brief context.
- PRs should describe scope, list local test commands run, and mention any impacts on MCP server or UI if applicable.
- Sign commits and affirm the DCO (see `CONTRIBUTING.md`).
## CI Mirrors Local Commands
Our GitHub Actions run the same ruff checks and pytest suites shown above (`.github/workflows/basic_tests.yml` and related workflows). Use the commands in this document locally to minimize CI surprises.

View file

@ -97,7 +97,7 @@ Hosted platform:
### 📦 Installation
You can install Cognee using either **pip**, **poetry**, **uv** or any other python package manager.
You can install Cognee using either **pip**, **poetry**, **uv** or any other python package manager..
Cognee supports Python 3.10 to 3.12

View file

@ -110,6 +110,47 @@ If you'd rather run cognee-mcp in a container, you have two options:
# For stdio transport (default)
docker run -e TRANSPORT_MODE=stdio --env-file ./.env --rm -it cognee/cognee-mcp:main
```
**Installing optional dependencies at runtime:**
You can install optional dependencies when running the container by setting the `EXTRAS` environment variable:
```bash
# Install a single optional dependency group at runtime
docker run \
-e TRANSPORT_MODE=http \
-e EXTRAS=aws \
--env-file ./.env \
-p 8000:8000 \
--rm -it cognee/cognee-mcp:main
# Install multiple optional dependency groups at runtime (comma-separated)
docker run \
-e TRANSPORT_MODE=sse \
-e EXTRAS=aws,postgres,neo4j \
--env-file ./.env \
-p 8000:8000 \
--rm -it cognee/cognee-mcp:main
```
**Available optional dependency groups:**
- `aws` - S3 storage support
- `postgres` / `postgres-binary` - PostgreSQL database support
- `neo4j` - Neo4j graph database support
- `neptune` - AWS Neptune support
- `chromadb` - ChromaDB vector store support
- `scraping` - Web scraping capabilities
- `distributed` - Modal distributed execution
- `langchain` - LangChain integration
- `llama-index` - LlamaIndex integration
- `anthropic` - Anthropic models
- `groq` - Groq models
- `mistral` - Mistral models
- `ollama` / `huggingface` - Local model support
- `docs` - Document processing
- `codegraph` - Code analysis
- `monitoring` - Sentry & Langfuse monitoring
- `redis` - Redis support
- And more (see [pyproject.toml](https://github.com/topoteretes/cognee/blob/main/pyproject.toml) for full list)
2. **Pull from Docker Hub** (no build required):
```bash
# With HTTP transport (recommended for web deployments)
@ -119,6 +160,17 @@ If you'd rather run cognee-mcp in a container, you have two options:
# With stdio transport (default)
docker run -e TRANSPORT_MODE=stdio --env-file ./.env --rm -it cognee/cognee-mcp:main
```
**With runtime installation of optional dependencies:**
```bash
# Install optional dependencies from Docker Hub image
docker run \
-e TRANSPORT_MODE=http \
-e EXTRAS=aws,postgres \
--env-file ./.env \
-p 8000:8000 \
--rm -it cognee/cognee-mcp:main
```
### **Important: Docker vs Direct Usage**
**Docker uses environment variables**, not command line arguments:

View file

@ -4,6 +4,42 @@ set -e # Exit on error
echo "Debug mode: $DEBUG"
echo "Environment: $ENVIRONMENT"
# Install optional dependencies if EXTRAS is set
if [ -n "$EXTRAS" ]; then
echo "Installing optional dependencies: $EXTRAS"
# Get the cognee version that's currently installed
COGNEE_VERSION=$(uv pip show cognee | grep "Version:" | awk '{print $2}')
echo "Current cognee version: $COGNEE_VERSION"
# Build the extras list for cognee
IFS=',' read -ra EXTRA_ARRAY <<< "$EXTRAS"
# Combine base extras from pyproject.toml with requested extras
ALL_EXTRAS=""
for extra in "${EXTRA_ARRAY[@]}"; do
# Trim whitespace
extra=$(echo "$extra" | xargs)
# Add to extras list if not already present
if [[ ! "$ALL_EXTRAS" =~ (^|,)"$extra"(,|$) ]]; then
if [ -z "$ALL_EXTRAS" ]; then
ALL_EXTRAS="$extra"
else
ALL_EXTRAS="$ALL_EXTRAS,$extra"
fi
fi
done
echo "Installing cognee with extras: $ALL_EXTRAS"
echo "Running: uv pip install 'cognee[$ALL_EXTRAS]==$COGNEE_VERSION'"
uv pip install "cognee[$ALL_EXTRAS]==$COGNEE_VERSION"
# Verify installation
echo ""
echo "✓ Optional dependencies installation completed"
else
echo "No optional dependencies specified"
fi
# Set default transport mode if not specified
TRANSPORT_MODE=${TRANSPORT_MODE:-"stdio"}
echo "Transport mode: $TRANSPORT_MODE"

View file

@ -9,7 +9,7 @@ dependencies = [
# For local cognee repo usage remove comment bellow and add absolute path to cognee. Then run `uv sync --reinstall` in the mcp folder on local cognee changes.
#"cognee[postgres,codegraph,gemini,huggingface,docs,neo4j] @ file:/Users/igorilic/Desktop/cognee",
# TODO: Remove gemini from optional dependecnies for new Cognee version after 0.3.4
"cognee[postgres,codegraph,huggingface,docs,neo4j]==0.3.7",
"cognee[postgres,docs,neo4j]==0.3.7",
"fastmcp>=2.10.0,<3.0.0",
"mcp>=1.12.0,<2.0.0",
"uv>=0.6.3,<1.0.0",

View file

@ -37,12 +37,10 @@ async def run():
toolResult = await session.call_tool("prune", arguments={})
toolResult = await session.call_tool(
"codify", arguments={"repo_path": "SOME_REPO_PATH"}
)
toolResult = await session.call_tool("cognify", arguments={})
toolResult = await session.call_tool(
"search", arguments={"search_type": "CODE", "search_query": "exceptions"}
"search", arguments={"search_type": "GRAPH_COMPLETION"}
)
print(f"Cognify result: {toolResult.content}")

64
cognee-mcp/uv.lock generated
View file

@ -718,19 +718,10 @@ wheels = [
]
[package.optional-dependencies]
codegraph = [
{ name = "fastembed", marker = "python_full_version < '3.13'" },
{ name = "transformers" },
{ name = "tree-sitter" },
{ name = "tree-sitter-python" },
]
docs = [
{ name = "lxml" },
{ name = "unstructured", extra = ["csv", "doc", "docx", "epub", "md", "odt", "org", "pdf", "ppt", "pptx", "rst", "rtf", "tsv", "xlsx"] },
]
huggingface = [
{ name = "transformers" },
]
neo4j = [
{ name = "neo4j" },
]
@ -745,7 +736,7 @@ name = "cognee-mcp"
version = "0.4.0"
source = { editable = "." }
dependencies = [
{ name = "cognee", extra = ["codegraph", "docs", "huggingface", "neo4j", "postgres"] },
{ name = "cognee", extra = ["docs", "neo4j", "postgres"] },
{ name = "fastmcp" },
{ name = "httpx" },
{ name = "mcp" },
@ -759,7 +750,7 @@ dev = [
[package.metadata]
requires-dist = [
{ name = "cognee", extras = ["postgres", "codegraph", "huggingface", "docs", "neo4j"], specifier = "==0.3.7" },
{ name = "cognee", extras = ["postgres", "docs", "neo4j"], specifier = "==0.3.7" },
{ name = "fastmcp", specifier = ">=2.10.0,<3.0.0" },
{ name = "httpx", specifier = ">=0.27.0,<1.0.0" },
{ name = "mcp", specifier = ">=1.12.0,<2.0.0" },
@ -6038,57 +6029,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/e5/2b/4d2708ac1ff5cd708b6548f4c5812d0ae40d1c28591c4c1c762b6dbdef2d/transformers-4.57.0-py3-none-any.whl", hash = "sha256:9d7c6d098c026e40d897e017ed1f481ab803cbac041021dbc6ae6100e4949b55", size = 11990588 },
]
[[package]]
name = "tree-sitter"
version = "0.24.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a7/a2/698b9d31d08ad5558f8bfbfe3a0781bd4b1f284e89bde3ad18e05101a892/tree-sitter-0.24.0.tar.gz", hash = "sha256:abd95af65ca2f4f7eca356343391ed669e764f37748b5352946f00f7fc78e734", size = 168304 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/08/9a/bd627a02e41671af73222316e1fcf87772c7804dc2fba99405275eb1f3eb/tree_sitter-0.24.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f3f00feff1fc47a8e4863561b8da8f5e023d382dd31ed3e43cd11d4cae445445", size = 140890 },
{ url = "https://files.pythonhosted.org/packages/5b/9b/b1ccfb187f8be78e2116176a091a2f2abfd043a06d78f80c97c97f315b37/tree_sitter-0.24.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f9691be48d98c49ef8f498460278884c666b44129222ed6217477dffad5d4831", size = 134413 },
{ url = "https://files.pythonhosted.org/packages/01/39/e25b0042a049eb27e991133a7aa7c49bb8e49a8a7b44ca34e7e6353ba7ac/tree_sitter-0.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:098a81df9f89cf254d92c1cd0660a838593f85d7505b28249216661d87adde4a", size = 560427 },
{ url = "https://files.pythonhosted.org/packages/1c/59/4d132f1388da5242151b90acf32cc56af779bfba063923699ab28b276b62/tree_sitter-0.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b26bf9e958da6eb7e74a081aab9d9c7d05f9baeaa830dbb67481898fd16f1f5", size = 574327 },
{ url = "https://files.pythonhosted.org/packages/ec/97/3914e45ab9e0ff0f157e493caa91791372508488b97ff0961a0640a37d25/tree_sitter-0.24.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2a84ff87a2f2a008867a1064aba510ab3bd608e3e0cd6e8fef0379efee266c73", size = 577171 },
{ url = "https://files.pythonhosted.org/packages/c5/b0/266a529c3eef171137b73cde8ad7aa282734354609a8b2f5564428e8f12d/tree_sitter-0.24.0-cp310-cp310-win_amd64.whl", hash = "sha256:c012e4c345c57a95d92ab5a890c637aaa51ab3b7ff25ed7069834b1087361c95", size = 120260 },
{ url = "https://files.pythonhosted.org/packages/c1/c3/07bfaa345e0037ff75d98b7a643cf940146e4092a1fd54eed0359836be03/tree_sitter-0.24.0-cp310-cp310-win_arm64.whl", hash = "sha256:033506c1bc2ba7bd559b23a6bdbeaf1127cee3c68a094b82396718596dfe98bc", size = 108416 },
{ url = "https://files.pythonhosted.org/packages/66/08/82aaf7cbea7286ee2a0b43e9b75cb93ac6ac132991b7d3c26ebe5e5235a3/tree_sitter-0.24.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:de0fb7c18c6068cacff46250c0a0473e8fc74d673e3e86555f131c2c1346fb13", size = 140733 },
{ url = "https://files.pythonhosted.org/packages/8c/bd/1a84574911c40734d80327495e6e218e8f17ef318dd62bb66b55c1e969f5/tree_sitter-0.24.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a7c9c89666dea2ce2b2bf98e75f429d2876c569fab966afefdcd71974c6d8538", size = 134243 },
{ url = "https://files.pythonhosted.org/packages/46/c1/c2037af2c44996d7bde84eb1c9e42308cc84b547dd6da7f8a8bea33007e1/tree_sitter-0.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ddb113e6b8b3e3b199695b1492a47d87d06c538e63050823d90ef13cac585fd", size = 562030 },
{ url = "https://files.pythonhosted.org/packages/4c/aa/2fb4d81886df958e6ec7e370895f7106d46d0bbdcc531768326124dc8972/tree_sitter-0.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01ea01a7003b88b92f7f875da6ba9d5d741e0c84bb1bd92c503c0eecd0ee6409", size = 575585 },
{ url = "https://files.pythonhosted.org/packages/e3/3c/5f997ce34c0d1b744e0f0c0757113bdfc173a2e3dadda92c751685cfcbd1/tree_sitter-0.24.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:464fa5b2cac63608915a9de8a6efd67a4da1929e603ea86abaeae2cb1fe89921", size = 578203 },
{ url = "https://files.pythonhosted.org/packages/d5/1f/f2bc7fa7c3081653ea4f2639e06ff0af4616c47105dbcc0746137da7620d/tree_sitter-0.24.0-cp311-cp311-win_amd64.whl", hash = "sha256:3b1f3cbd9700e1fba0be2e7d801527e37c49fc02dc140714669144ef6ab58dce", size = 120147 },
{ url = "https://files.pythonhosted.org/packages/c0/4c/9add771772c4d72a328e656367ca948e389432548696a3819b69cdd6f41e/tree_sitter-0.24.0-cp311-cp311-win_arm64.whl", hash = "sha256:f3f08a2ca9f600b3758792ba2406971665ffbad810847398d180c48cee174ee2", size = 108302 },
{ url = "https://files.pythonhosted.org/packages/e9/57/3a590f287b5aa60c07d5545953912be3d252481bf5e178f750db75572bff/tree_sitter-0.24.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:14beeff5f11e223c37be7d5d119819880601a80d0399abe8c738ae2288804afc", size = 140788 },
{ url = "https://files.pythonhosted.org/packages/61/0b/fc289e0cba7dbe77c6655a4dd949cd23c663fd62a8b4d8f02f97e28d7fe5/tree_sitter-0.24.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:26a5b130f70d5925d67b47db314da209063664585a2fd36fa69e0717738efaf4", size = 133945 },
{ url = "https://files.pythonhosted.org/packages/86/d7/80767238308a137e0b5b5c947aa243e3c1e3e430e6d0d5ae94b9a9ffd1a2/tree_sitter-0.24.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fc5c3c26d83c9d0ecb4fc4304fba35f034b7761d35286b936c1db1217558b4e", size = 564819 },
{ url = "https://files.pythonhosted.org/packages/bf/b3/6c5574f4b937b836601f5fb556b24804b0a6341f2eb42f40c0e6464339f4/tree_sitter-0.24.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:772e1bd8c0931c866b848d0369b32218ac97c24b04790ec4b0e409901945dd8e", size = 579303 },
{ url = "https://files.pythonhosted.org/packages/0a/f4/bd0ddf9abe242ea67cca18a64810f8af230fc1ea74b28bb702e838ccd874/tree_sitter-0.24.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:24a8dd03b0d6b8812425f3b84d2f4763322684e38baf74e5bb766128b5633dc7", size = 581054 },
{ url = "https://files.pythonhosted.org/packages/8c/1c/ff23fa4931b6ef1bbeac461b904ca7e49eaec7e7e5398584e3eef836ec96/tree_sitter-0.24.0-cp312-cp312-win_amd64.whl", hash = "sha256:f9e8b1605ab60ed43803100f067eed71b0b0e6c1fb9860a262727dbfbbb74751", size = 120221 },
{ url = "https://files.pythonhosted.org/packages/b2/2a/9979c626f303177b7612a802237d0533155bf1e425ff6f73cc40f25453e2/tree_sitter-0.24.0-cp312-cp312-win_arm64.whl", hash = "sha256:f733a83d8355fc95561582b66bbea92ffd365c5d7a665bc9ebd25e049c2b2abb", size = 108234 },
{ url = "https://files.pythonhosted.org/packages/61/cd/2348339c85803330ce38cee1c6cbbfa78a656b34ff58606ebaf5c9e83bd0/tree_sitter-0.24.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0d4a6416ed421c4210f0ca405a4834d5ccfbb8ad6692d4d74f7773ef68f92071", size = 140781 },
{ url = "https://files.pythonhosted.org/packages/8b/a3/1ea9d8b64e8dcfcc0051028a9c84a630301290995cd6e947bf88267ef7b1/tree_sitter-0.24.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:e0992d483677e71d5c5d37f30dfb2e3afec2f932a9c53eec4fca13869b788c6c", size = 133928 },
{ url = "https://files.pythonhosted.org/packages/fe/ae/55c1055609c9428a4aedf4b164400ab9adb0b1bf1538b51f4b3748a6c983/tree_sitter-0.24.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57277a12fbcefb1c8b206186068d456c600dbfbc3fd6c76968ee22614c5cd5ad", size = 564497 },
{ url = "https://files.pythonhosted.org/packages/ce/d0/f2ffcd04882c5aa28d205a787353130cbf84b2b8a977fd211bdc3b399ae3/tree_sitter-0.24.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d25fa22766d63f73716c6fec1a31ee5cf904aa429484256bd5fdf5259051ed74", size = 578917 },
{ url = "https://files.pythonhosted.org/packages/af/82/aebe78ea23a2b3a79324993d4915f3093ad1af43d7c2208ee90be9273273/tree_sitter-0.24.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7d5d9537507e1c8c5fa9935b34f320bfec4114d675e028f3ad94f11cf9db37b9", size = 581148 },
{ url = "https://files.pythonhosted.org/packages/a1/b4/6b0291a590c2b0417cfdb64ccb8ea242f270a46ed429c641fbc2bfab77e0/tree_sitter-0.24.0-cp313-cp313-win_amd64.whl", hash = "sha256:f58bb4956917715ec4d5a28681829a8dad5c342cafd4aea269f9132a83ca9b34", size = 120207 },
{ url = "https://files.pythonhosted.org/packages/a8/18/542fd844b75272630229c9939b03f7db232c71a9d82aadc59c596319ea6a/tree_sitter-0.24.0-cp313-cp313-win_arm64.whl", hash = "sha256:23641bd25dcd4bb0b6fa91b8fb3f46cc9f1c9f475efe4d536d3f1f688d1b84c8", size = 108232 },
]
[[package]]
name = "tree-sitter-python"
version = "0.23.6"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/1c/30/6766433b31be476fda6569a3a374c2220e45ffee0bff75460038a57bf23b/tree_sitter_python-0.23.6.tar.gz", hash = "sha256:354bfa0a2f9217431764a631516f85173e9711af2c13dbd796a8815acfe505d9", size = 155868 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ab/67/577a02acae5f776007c924ca86ef14c19c12e71de0aa9d2a036f3c248e7b/tree_sitter_python-0.23.6-cp39-abi3-macosx_10_9_x86_64.whl", hash = "sha256:28fbec8f74eeb2b30292d97715e60fac9ccf8a8091ce19b9d93e9b580ed280fb", size = 74361 },
{ url = "https://files.pythonhosted.org/packages/d2/a6/194b3625a7245c532ad418130d63077ce6cd241152524152f533e4d6edb0/tree_sitter_python-0.23.6-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:680b710051b144fedf61c95197db0094f2245e82551bf7f0c501356333571f7a", size = 76436 },
{ url = "https://files.pythonhosted.org/packages/d0/62/1da112689d6d282920e62c40e67ab39ea56463b0e7167bfc5e81818a770e/tree_sitter_python-0.23.6-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a9dcef55507b6567207e8ee0a6b053d0688019b47ff7f26edc1764b7f4dc0a4", size = 112060 },
{ url = "https://files.pythonhosted.org/packages/5d/62/c9358584c96e38318d69b6704653684fd8467601f7b74e88aa44f4e6903f/tree_sitter_python-0.23.6-cp39-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:29dacdc0cd2f64e55e61d96c6906533ebb2791972bec988450c46cce60092f5d", size = 112338 },
{ url = "https://files.pythonhosted.org/packages/1a/58/c5e61add45e34fb8ecbf057c500bae9d96ed7c9ca36edb7985da8ae45526/tree_sitter_python-0.23.6-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:7e048733c36f564b379831689006801feb267d8194f9e793fbb395ef1723335d", size = 109382 },
{ url = "https://files.pythonhosted.org/packages/e9/f3/9b30893cae9b3811fe652dc6f90aaadfda12ae0b2757f5722fc7266f423c/tree_sitter_python-0.23.6-cp39-abi3-win_amd64.whl", hash = "sha256:a24027248399fb41594b696f929f9956828ae7cc85596d9f775e6c239cd0c2be", size = 75904 },
{ url = "https://files.pythonhosted.org/packages/87/cb/ce35a65f83a47b510d8a2f1eddf3bdbb0d57aabc87351c8788caf3309f76/tree_sitter_python-0.23.6-cp39-abi3-win_arm64.whl", hash = "sha256:71334371bd73d5fe080aed39fbff49ed8efb9506edebe16795b0c7567ed6a272", size = 73649 },
]
[[package]]
name = "triton"
version = "3.5.0"

View file

@ -1,4 +1,4 @@
from pydantic import BaseModel
from pydantic import BaseModel, field_validator
from typing import Optional, Any, Dict
@ -18,9 +18,21 @@ class Edge(BaseModel):
# Mixed usage
has_items: (Edge(weight=0.5, weights={"confidence": 0.9}), list[Item])
# With edge_text for rich embedding representation
contains: (Edge(relationship_type="contains", edge_text="relationship_name: contains; entity_description: Alice"), Entity)
"""
weight: Optional[float] = None
weights: Optional[Dict[str, float]] = None
relationship_type: Optional[str] = None
properties: Optional[Dict[str, Any]] = None
edge_text: Optional[str] = None
@field_validator("edge_text", mode="before")
@classmethod
def ensure_edge_text(cls, v, info):
"""Auto-populate edge_text from relationship_type if not explicitly provided."""
if v is None and info.data.get("relationship_type"):
return info.data["relationship_type"]
return v

View file

@ -22,42 +22,6 @@ class FileTypeException(Exception):
self.message = message
class TxtFileType(filetype.Type):
"""
Represents a text file type with specific MIME and extension properties.
Public methods:
- match: Determines whether a given buffer matches the text file type.
"""
MIME = "text/plain"
EXTENSION = "txt"
def __init__(self):
super(TxtFileType, self).__init__(mime=TxtFileType.MIME, extension=TxtFileType.EXTENSION)
def match(self, buf):
"""
Determine if the given buffer contains text content.
Parameters:
-----------
- buf: The buffer to check for text content.
Returns:
--------
Returns True if the buffer is identified as text content, otherwise False.
"""
return is_text_content(buf)
txt_file_type = TxtFileType()
filetype.add_type(txt_file_type)
def guess_file_type(file: BinaryIO) -> filetype.Type:
"""
Guess the file type from the given binary file stream.

View file

@ -1,6 +1,7 @@
import filetype
from typing import Dict, List, Optional, Any
from .LoaderInterface import LoaderInterface
from cognee.infrastructure.files.utils.guess_file_type import guess_file_type
from cognee.shared.logging_utils import get_logger
logger = get_logger(__name__)
@ -80,7 +81,7 @@ class LoaderEngine:
"""
from pathlib import Path
file_info = filetype.guess(file_path)
file_info = guess_file_type(file_path)
path_extension = Path(file_path).suffix.lstrip(".")

View file

@ -1,6 +1,7 @@
from typing import List, Union
from cognee.infrastructure.engine import DataPoint
from cognee.infrastructure.engine.models.Edge import Edge
from cognee.modules.data.processing.document_types import Document
from cognee.modules.engine.models import Entity
from cognee.tasks.temporal_graph.models import Event
@ -31,6 +32,6 @@ class DocumentChunk(DataPoint):
chunk_index: int
cut_type: str
is_part_of: Document
contains: List[Union[Entity, Event]] = None
contains: List[Union[Entity, Event, tuple[Edge, Entity]]] = None
metadata: dict = {"index_fields": ["text"]}

View file

@ -171,8 +171,10 @@ class CogneeGraph(CogneeAbstractGraph):
embedding_map = {result.payload["text"]: result.score for result in edge_distances}
for edge in self.edges:
relationship_type = edge.attributes.get("relationship_type")
distance = embedding_map.get(relationship_type, None)
edge_key = edge.attributes.get("edge_text") or edge.attributes.get(
"relationship_type"
)
distance = embedding_map.get(edge_key, None)
if distance is not None:
edge.attributes["vector_distance"] = distance

View file

@ -1,5 +1,6 @@
from typing import Optional
from cognee.infrastructure.engine.models.Edge import Edge
from cognee.modules.chunking.models import DocumentChunk
from cognee.modules.engine.models import Entity, EntityType
from cognee.modules.engine.utils import (
@ -243,10 +244,26 @@ def _process_graph_nodes(
ontology_relationships,
)
# Add entity to data chunk
if data_chunk.contains is None:
data_chunk.contains = []
data_chunk.contains.append(entity_node)
edge_text = "; ".join(
[
"relationship_name: contains",
f"entity_name: {entity_node.name}",
f"entity_description: {entity_node.description}",
]
)
data_chunk.contains.append(
(
Edge(
relationship_type="contains",
edge_text=edge_text,
),
entity_node,
)
)
def _process_graph_edges(

View file

@ -1,71 +1,70 @@
import string
from typing import List
from collections import Counter
from cognee.modules.graph.cognee_graph.CogneeGraphElements import Edge
from cognee.modules.retrieval.utils.stop_words import DEFAULT_STOP_WORDS
def _get_top_n_frequent_words(
text: str, stop_words: set = None, top_n: int = 3, separator: str = ", "
) -> str:
"""Concatenates the top N frequent words in text."""
if stop_words is None:
stop_words = DEFAULT_STOP_WORDS
words = [word.lower().strip(string.punctuation) for word in text.split()]
words = [word for word in words if word and word not in stop_words]
top_words = [word for word, freq in Counter(words).most_common(top_n)]
return separator.join(top_words)
def _create_title_from_text(text: str, first_n_words: int = 7, top_n_words: int = 3) -> str:
"""Creates a title by combining first words with most frequent words from the text."""
first_words = text.split()[:first_n_words]
top_words = _get_top_n_frequent_words(text, top_n=top_n_words)
return f"{' '.join(first_words)}... [{top_words}]"
def _extract_nodes_from_edges(retrieved_edges: List[Edge]) -> dict:
"""Creates a dictionary of nodes with their names and content."""
nodes = {}
for edge in retrieved_edges:
for node in (edge.node1, edge.node2):
if node.id in nodes:
continue
text = node.attributes.get("text")
if text:
name = _create_title_from_text(text)
content = text
else:
name = node.attributes.get("name", "Unnamed Node")
content = node.attributes.get("description", name)
nodes[node.id] = {"node": node, "name": name, "content": content}
return nodes
async def resolve_edges_to_text(retrieved_edges: List[Edge]) -> str:
"""
Converts retrieved graph edges into a human-readable string format.
"""Converts retrieved graph edges into a human-readable string format."""
nodes = _extract_nodes_from_edges(retrieved_edges)
Parameters:
-----------
- retrieved_edges (list): A list of edges retrieved from the graph.
Returns:
--------
- str: A formatted string representation of the nodes and their connections.
"""
def _get_nodes(retrieved_edges: List[Edge]) -> dict:
def _get_title(text: str, first_n_words: int = 7, top_n_words: int = 3) -> str:
def _top_n_words(text, stop_words=None, top_n=3, separator=", "):
"""Concatenates the top N frequent words in text."""
if stop_words is None:
from cognee.modules.retrieval.utils.stop_words import DEFAULT_STOP_WORDS
stop_words = DEFAULT_STOP_WORDS
import string
words = [word.lower().strip(string.punctuation) for word in text.split()]
if stop_words:
words = [word for word in words if word and word not in stop_words]
from collections import Counter
top_words = [word for word, freq in Counter(words).most_common(top_n)]
return separator.join(top_words)
"""Creates a title, by combining first words with most frequent words from the text."""
first_words = text.split()[:first_n_words]
top_words = _top_n_words(text, top_n=first_n_words)
return f"{' '.join(first_words)}... [{top_words}]"
"""Creates a dictionary of nodes with their names and content."""
nodes = {}
for edge in retrieved_edges:
for node in (edge.node1, edge.node2):
if node.id not in nodes:
text = node.attributes.get("text")
if text:
name = _get_title(text)
content = text
else:
name = node.attributes.get("name", "Unnamed Node")
content = node.attributes.get("description", name)
nodes[node.id] = {"node": node, "name": name, "content": content}
return nodes
nodes = _get_nodes(retrieved_edges)
node_section = "\n".join(
f"Node: {info['name']}\n__node_content_start__\n{info['content']}\n__node_content_end__\n"
for info in nodes.values()
)
connection_section = "\n".join(
f"{nodes[edge.node1.id]['name']} --[{edge.attributes['relationship_type']}]--> {nodes[edge.node2.id]['name']}"
for edge in retrieved_edges
)
connections = []
for edge in retrieved_edges:
source_name = nodes[edge.node1.id]["name"]
target_name = nodes[edge.node2.id]["name"]
edge_label = edge.attributes.get("edge_text") or edge.attributes.get("relationship_type")
connections.append(f"{source_name} --[{edge_label}]--> {target_name}")
connection_section = "\n".join(connections)
return f"Nodes:\n{node_section}\n\nConnections:\n{connection_section}"

View file

@ -71,7 +71,7 @@ async def get_memory_fragment(
await memory_fragment.project_graph_from_db(
graph_engine,
node_properties_to_project=properties_to_project,
edge_properties_to_project=["relationship_name"],
edge_properties_to_project=["relationship_name", "edge_text"],
node_type=node_type,
node_name=node_name,
)

View file

@ -8,47 +8,58 @@ logger = get_logger("index_data_points")
async def index_data_points(data_points: list[DataPoint]):
created_indexes = {}
index_points = {}
"""Index data points in the vector engine by creating embeddings for specified fields.
Process:
1. Groups data points into a nested dict: {type_name: {field_name: [points]}}
2. Creates vector indexes for each (type, field) combination on first encounter
3. Batches points per (type, field) and creates async indexing tasks
4. Executes all indexing tasks in parallel for efficient embedding generation
Args:
data_points: List of DataPoint objects to index. Each DataPoint's metadata must
contain an 'index_fields' list specifying which fields to embed.
Returns:
The original data_points list.
"""
data_points_by_type = {}
vector_engine = get_vector_engine()
for data_point in data_points:
data_point_type = type(data_point)
type_name = data_point_type.__name__
for field_name in data_point.metadata["index_fields"]:
if getattr(data_point, field_name, None) is None:
continue
index_name = f"{data_point_type.__name__}_{field_name}"
if type_name not in data_points_by_type:
data_points_by_type[type_name] = {}
if index_name not in created_indexes:
await vector_engine.create_vector_index(data_point_type.__name__, field_name)
created_indexes[index_name] = True
if index_name not in index_points:
index_points[index_name] = []
if field_name not in data_points_by_type[type_name]:
await vector_engine.create_vector_index(type_name, field_name)
data_points_by_type[type_name][field_name] = []
indexed_data_point = data_point.model_copy()
indexed_data_point.metadata["index_fields"] = [field_name]
index_points[index_name].append(indexed_data_point)
data_points_by_type[type_name][field_name].append(indexed_data_point)
tasks: list[asyncio.Task] = []
batch_size = vector_engine.embedding_engine.get_batch_size()
for index_name_and_field, points in index_points.items():
first = index_name_and_field.index("_")
index_name = index_name_and_field[:first]
field_name = index_name_and_field[first + 1 :]
batches = (
(type_name, field_name, points[i : i + batch_size])
for type_name, fields in data_points_by_type.items()
for field_name, points in fields.items()
for i in range(0, len(points), batch_size)
)
# Create embedding requests per batch to run in parallel later
for i in range(0, len(points), batch_size):
batch = points[i : i + batch_size]
tasks.append(
asyncio.create_task(vector_engine.index_data_points(index_name, field_name, batch))
)
tasks = [
asyncio.create_task(vector_engine.index_data_points(type_name, field_name, batch_points))
for type_name, field_name, batch_points in batches
]
# Run all embedding requests in parallel
await asyncio.gather(*tasks)
return data_points

View file

@ -1,17 +1,44 @@
import asyncio
from collections import Counter
from typing import Optional, Dict, Any, List, Tuple, Union
from cognee.modules.engine.utils.generate_edge_id import generate_edge_id
from cognee.shared.logging_utils import get_logger
from collections import Counter
from typing import Optional, Dict, Any, List, Tuple, Union
from cognee.infrastructure.databases.vector import get_vector_engine
from cognee.infrastructure.databases.graph import get_graph_engine
from cognee.modules.graph.models.EdgeType import EdgeType
from cognee.infrastructure.databases.graph.graph_db_interface import EdgeData
from cognee.tasks.storage.index_data_points import index_data_points
logger = get_logger()
def _get_edge_text(item: dict) -> str:
"""Extract edge text for embedding - prefers edge_text field with fallback."""
if "edge_text" in item:
return item["edge_text"]
if "relationship_name" in item:
return item["relationship_name"]
return ""
def create_edge_type_datapoints(edges_data) -> list[EdgeType]:
"""Transform raw edge data into EdgeType datapoints."""
edge_texts = [
_get_edge_text(item)
for edge in edges_data
for item in edge
if isinstance(item, dict) and "relationship_name" in item
]
edge_types = Counter(edge_texts)
return [
EdgeType(id=generate_edge_id(edge_id=text), relationship_name=text, number_of_edges=count)
for text, count in edge_types.items()
]
async def index_graph_edges(
edges_data: Union[List[EdgeData], List[Tuple[str, str, str, Optional[Dict[str, Any]]]]] = None,
):
@ -23,24 +50,17 @@ async def index_graph_edges(
the `relationship_name` field.
Steps:
1. Initialize the vector engine and graph engine.
2. Retrieve graph edge data and count relationship types (`relationship_name`).
3. Create vector indexes for `relationship_name` if they don't exist.
4. Transform the counted relationships into `EdgeType` objects.
5. Index the transformed data points in the vector engine.
1. Initialize the graph engine if needed and retrieve edge data.
2. Transform edge data into EdgeType datapoints.
3. Index the EdgeType datapoints using the standard indexing function.
Raises:
RuntimeError: If initialization of the vector engine or graph engine fails.
RuntimeError: If initialization of the graph engine fails.
Returns:
None
"""
try:
created_indexes = {}
index_points = {}
vector_engine = get_vector_engine()
if edges_data is None:
graph_engine = await get_graph_engine()
_, edges_data = await graph_engine.get_graph_data()
@ -51,47 +71,7 @@ async def index_graph_edges(
logger.error("Failed to initialize engines: %s", e)
raise RuntimeError("Initialization error") from e
edge_types = Counter(
item.get("relationship_name")
for edge in edges_data
for item in edge
if isinstance(item, dict) and "relationship_name" in item
)
for text, count in edge_types.items():
edge = EdgeType(
id=generate_edge_id(edge_id=text), relationship_name=text, number_of_edges=count
)
data_point_type = type(edge)
for field_name in edge.metadata["index_fields"]:
index_name = f"{data_point_type.__name__}.{field_name}"
if index_name not in created_indexes:
await vector_engine.create_vector_index(data_point_type.__name__, field_name)
created_indexes[index_name] = True
if index_name not in index_points:
index_points[index_name] = []
indexed_data_point = edge.model_copy()
indexed_data_point.metadata["index_fields"] = [field_name]
index_points[index_name].append(indexed_data_point)
# Get maximum batch size for embedding model
batch_size = vector_engine.embedding_engine.get_batch_size()
tasks: list[asyncio.Task] = []
for index_name, indexable_points in index_points.items():
index_name, field_name = index_name.split(".")
# Create embedding tasks to run in parallel later
for start in range(0, len(indexable_points), batch_size):
batch = indexable_points[start : start + batch_size]
tasks.append(vector_engine.index_data_points(index_name, field_name, batch))
# Start all embedding tasks and wait for completion
await asyncio.gather(*tasks)
edge_type_datapoints = create_edge_type_datapoints(edges_data)
await index_data_points(edge_type_datapoints)
return None

View file

@ -52,6 +52,33 @@ async def test_edge_ingestion():
edge_type_counts = Counter(edge_type[2] for edge_type in graph[1])
"Tests edge_text presence and format"
contains_edges = [edge for edge in graph[1] if edge[2] == "contains"]
assert len(contains_edges) > 0, "Expected at least one contains edge for edge_text verification"
edge_properties = contains_edges[0][3]
assert "edge_text" in edge_properties, "Expected edge_text in edge properties"
edge_text = edge_properties["edge_text"]
assert "relationship_name: contains" in edge_text, (
f"Expected 'relationship_name: contains' in edge_text, got: {edge_text}"
)
assert "entity_name:" in edge_text, f"Expected 'entity_name:' in edge_text, got: {edge_text}"
assert "entity_description:" in edge_text, (
f"Expected 'entity_description:' in edge_text, got: {edge_text}"
)
all_edge_texts = [
edge[3].get("edge_text", "") for edge in contains_edges if "edge_text" in edge[3]
]
expected_entities = ["dave", "ana", "bob", "dexter", "apples", "cognee"]
found_entity = any(
any(entity in text.lower() for entity in expected_entities) for text in all_edge_texts
)
assert found_entity, (
f"Expected to find at least one entity name in edge_text: {all_edge_texts[:3]}"
)
"Tests the presence of basic nested edges"
for basic_nested_edge in basic_nested_edges:
assert edge_type_counts.get(basic_nested_edge, 0) >= 1, (

View file

@ -0,0 +1,27 @@
import pytest
from unittest.mock import AsyncMock, patch, MagicMock
from cognee.tasks.storage.index_data_points import index_data_points
from cognee.infrastructure.engine import DataPoint
class TestDataPoint(DataPoint):
name: str
metadata: dict = {"index_fields": ["name"]}
@pytest.mark.asyncio
async def test_index_data_points_calls_vector_engine():
"""Test that index_data_points creates vector index and indexes data."""
data_points = [TestDataPoint(name="test1")]
mock_vector_engine = AsyncMock()
mock_vector_engine.embedding_engine.get_batch_size = MagicMock(return_value=100)
with patch.dict(
index_data_points.__globals__,
{"get_vector_engine": lambda: mock_vector_engine},
):
await index_data_points(data_points)
assert mock_vector_engine.create_vector_index.await_count >= 1
assert mock_vector_engine.index_data_points.await_count >= 1

View file

@ -5,8 +5,7 @@ from cognee.tasks.storage.index_graph_edges import index_graph_edges
@pytest.mark.asyncio
async def test_index_graph_edges_success():
"""Test that index_graph_edges uses the index datapoints and creates vector index."""
# Create the mocks for the graph and vector engines.
"""Test that index_graph_edges retrieves edges and delegates to index_data_points."""
mock_graph_engine = AsyncMock()
mock_graph_engine.get_graph_data.return_value = (
None,
@ -15,26 +14,23 @@ async def test_index_graph_edges_success():
[{"relationship_name": "rel2"}],
],
)
mock_vector_engine = AsyncMock()
mock_vector_engine.embedding_engine.get_batch_size = MagicMock(return_value=100)
mock_index_data_points = AsyncMock()
# Patch the globals of the function so that when it does:
# vector_engine = get_vector_engine()
# graph_engine = await get_graph_engine()
# it uses the mocked versions.
with patch.dict(
index_graph_edges.__globals__,
{
"get_graph_engine": AsyncMock(return_value=mock_graph_engine),
"get_vector_engine": lambda: mock_vector_engine,
"index_data_points": mock_index_data_points,
},
):
await index_graph_edges()
# Assertions on the mock calls.
mock_graph_engine.get_graph_data.assert_awaited_once()
assert mock_vector_engine.create_vector_index.await_count == 1
assert mock_vector_engine.index_data_points.await_count == 1
mock_index_data_points.assert_awaited_once()
call_args = mock_index_data_points.call_args[0][0]
assert len(call_args) == 2
assert all(hasattr(item, "relationship_name") for item in call_args)
@pytest.mark.asyncio
@ -42,20 +38,22 @@ async def test_index_graph_edges_no_relationships():
"""Test that index_graph_edges handles empty relationships correctly."""
mock_graph_engine = AsyncMock()
mock_graph_engine.get_graph_data.return_value = (None, [])
mock_vector_engine = AsyncMock()
mock_index_data_points = AsyncMock()
with patch.dict(
index_graph_edges.__globals__,
{
"get_graph_engine": AsyncMock(return_value=mock_graph_engine),
"get_vector_engine": lambda: mock_vector_engine,
"index_data_points": mock_index_data_points,
},
):
await index_graph_edges()
mock_graph_engine.get_graph_data.assert_awaited_once()
mock_vector_engine.create_vector_index.assert_not_awaited()
mock_vector_engine.index_data_points.assert_not_awaited()
mock_index_data_points.assert_awaited_once()
call_args = mock_index_data_points.call_args[0][0]
assert len(call_args) == 0
@pytest.mark.asyncio

View file

@ -1,7 +1,7 @@
[project]
name = "cognee"
version = "0.3.7.dev1"
version = "0.3.8"
description = "Cognee - is a library for enriching LLM context with a semantic layer for better understanding and reasoning."
authors = [
{ name = "Vasilije Markovic" },

2
uv.lock generated
View file

@ -929,7 +929,7 @@ wheels = [
[[package]]
name = "cognee"
version = "0.3.7.dev1"
version = "0.3.8"
source = { editable = "." }
dependencies = [
{ name = "aiofiles" },