Fix low level pipeline (#1203)

<!-- .github/pull_request_template.md -->

## Description
<!-- Provide a clear description of the changes in this PR -->

## DCO Affirmation
I affirm that all code in every commit of this pull request conforms to
the terms of the Topoteretes Developer Certificate of Origin.
This commit is contained in:
Igor Ilic 2025-08-05 17:01:48 +02:00 committed by GitHub
parent ba624660b9
commit 8d4ed35cbe
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 63 additions and 34 deletions

View file

@ -2,7 +2,7 @@ import os
import asyncio
from uuid import UUID
from typing import Any
from typing import Any, List
from functools import wraps
from sqlalchemy import select
@ -60,9 +60,9 @@ def override_run_tasks(new_gen):
@override_run_tasks(run_tasks_distributed)
async def run_tasks(
tasks: list[Task],
tasks: List[Task],
dataset_id: UUID,
data: Any = None,
data: List[Any] = None,
user: User = None,
pipeline_name: str = "unknown_pipeline",
context: dict = None,

View file

@ -45,7 +45,7 @@ async def index_data_points(data_points: list[DataPoint]):
index_name = index_name_and_field[:first_occurence]
field_name = index_name_and_field[first_occurence + 1 :]
try:
# In case the ammount if indexable points is too large we need to send them in batches
# In case the amount of indexable points is too large we need to send them in batches
batch_size = 100
for i in range(0, len(indexable_points), batch_size):
batch = indexable_points[i : i + batch_size]

View file

@ -1,69 +1,77 @@
import os
import json
import asyncio
from typing import List, Any
from cognee import prune
from cognee import visualize_graph
from cognee.low_level import setup, DataPoint
from cognee.modules.data.methods import load_or_create_datasets
from cognee.modules.users.methods import get_default_user
from cognee.pipelines import run_tasks, Task
from cognee.tasks.storage import add_data_points
class Person(DataPoint):
name: str
# Metadata "index_fields" specifies which DataPoint fields should be embedded for vector search
metadata: dict = {"index_fields": ["name"]}
class Department(DataPoint):
name: str
employees: list[Person]
# Metadata "index_fields" specifies which DataPoint fields should be embedded for vector search
metadata: dict = {"index_fields": ["name"]}
class CompanyType(DataPoint):
name: str = "Company"
# Metadata "index_fields" specifies which DataPoint fields should be embedded for vector search
metadata: dict = {"index_fields": ["name"]}
class Company(DataPoint):
name: str
departments: list[Department]
is_type: CompanyType
# Metadata "index_fields" specifies which DataPoint fields should be embedded for vector search
metadata: dict = {"index_fields": ["name"]}
def ingest_files():
companies_file_path = os.path.join(os.path.dirname(__file__), "companies.json")
companies = json.loads(open(companies_file_path, "r").read())
people_file_path = os.path.join(os.path.dirname(__file__), "people.json")
people = json.loads(open(people_file_path, "r").read())
def ingest_files(data: List[Any]):
people_data_points = {}
departments_data_points = {}
for person in people:
new_person = Person(name=person["name"])
people_data_points[person["name"]] = new_person
if person["department"] not in departments_data_points:
departments_data_points[person["department"]] = Department(
name=person["department"], employees=[new_person]
)
else:
departments_data_points[person["department"]].employees.append(new_person)
companies_data_points = {}
# Create a single CompanyType node, so we connect all companies to it.
companyType = CompanyType()
for data_item in data:
people = data_item["people"]
companies = data_item["companies"]
for company in companies:
new_company = Company(name=company["name"], departments=[], is_type=companyType)
companies_data_points[company["name"]] = new_company
for person in people:
new_person = Person(name=person["name"])
people_data_points[person["name"]] = new_person
for department_name in company["departments"]:
if department_name not in departments_data_points:
departments_data_points[department_name] = Department(
name=department_name, employees=[]
if person["department"] not in departments_data_points:
departments_data_points[person["department"]] = Department(
name=person["department"], employees=[new_person]
)
else:
departments_data_points[person["department"]].employees.append(new_person)
new_company.departments.append(departments_data_points[department_name])
# Create a single CompanyType node, so we connect all companies to it.
companyType = CompanyType()
for company in companies:
new_company = Company(name=company["name"], departments=[], is_type=companyType)
companies_data_points[company["name"]] = new_company
for department_name in company["departments"]:
if department_name not in departments_data_points:
departments_data_points[department_name] = Department(
name=department_name, employees=[]
)
new_company.departments.append(departments_data_points[department_name])
return companies_data_points.values()
@ -72,9 +80,30 @@ async def main():
await prune.prune_data()
await prune.prune_system(metadata=True)
# Create relational database tables
await setup()
pipeline = run_tasks([Task(ingest_files), Task(add_data_points)])
# If no user is provided use default user
user = await get_default_user()
# Create dataset object to keep track of pipeline status
datasets = await load_or_create_datasets(["test_dataset"], [], user)
# Prepare data for pipeline
companies_file_path = os.path.join(os.path.dirname(__file__), "companies.json")
companies = json.loads(open(companies_file_path, "r").read())
people_file_path = os.path.join(os.path.dirname(__file__), "people.json")
people = json.loads(open(people_file_path, "r").read())
# Run tasks expects a list of data even if it is just one document
data = [{"companies": companies, "people": people}]
pipeline = run_tasks(
[Task(ingest_files), Task(add_data_points)],
dataset_id=datasets[0].id,
data=data,
incremental_loading=False,
)
async for status in pipeline:
print(status)