Added graph intefrace, added neo4j + networkx structure and updates to the notebook
This commit is contained in:
parent
2433e4ed93
commit
876227e5a0
5 changed files with 16 additions and 10 deletions
|
|
@ -180,11 +180,11 @@ class OpenAIAdapter(LLMInterface):
|
|||
|
||||
return embeddings
|
||||
|
||||
async def acreate_structured_output(self, text_input: str, system_prompt_path: str, response_model: Type[BaseModel], model:str) -> BaseModel:
|
||||
async def acreate_structured_output(self, text_input: str, system_prompt_path: str, response_model: Type[BaseModel]) -> BaseModel:
|
||||
"""Generate a response from a user query."""
|
||||
system_prompt = read_query_prompt(system_prompt_path)
|
||||
return self.aclient.chat.completions.create(
|
||||
model=model,
|
||||
model=self.model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
|
|
|
|||
|
|
@ -1,13 +1,15 @@
|
|||
from pydantic import BaseModel
|
||||
from typing import Type
|
||||
from cognitive_architecture.infrastructure.llm.get_llm_client import get_llm_client
|
||||
from cognitive_architecture.shared.data_models import ContentPrediction
|
||||
|
||||
|
||||
async def content_to_cog_layers(memory_name: str, payload: list):
|
||||
async def content_to_cog_layers(text_input: str,system_prompt_path:str, response_model: Type[BaseModel]):
|
||||
llm_client = get_llm_client()
|
||||
|
||||
# data_points = list()
|
||||
# for point in map(create_data_point, payload):
|
||||
# data_points.append(await point)
|
||||
|
||||
return await llm_client.acreate_structured_output(memory_name, payload, model="text-embedding-ada-002")
|
||||
return await llm_client.acreate_structured_output(text_input,system_prompt_path, response_model)
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1,14 +1,16 @@
|
|||
from typing import Type
|
||||
from pydantic import BaseModel
|
||||
from cognitive_architecture.infrastructure.llm.get_llm_client import get_llm_client
|
||||
|
||||
|
||||
async def content_to_cog_layers(memory_name: str, payload: list):
|
||||
async def content_to_cog_layers(text_input: str,system_prompt_path:str, response_model: Type[BaseModel]):
|
||||
llm_client = get_llm_client()
|
||||
|
||||
# data_points = list()
|
||||
# for point in map(create_data_point, payload):
|
||||
# data_points.append(await point)
|
||||
|
||||
return await llm_client.acreate_structured_output(memory_name, payload, model="text-embedding-ada-002")
|
||||
return await llm_client.acreate_structured_output(text_input,system_prompt_path, response_model)
|
||||
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1,9 +1,11 @@
|
|||
""" Content to Propositions"""
|
||||
from typing import Type
|
||||
from pydantic import BaseModel
|
||||
from cognitive_architecture.infrastructure.llm.get_llm_client import get_llm_client
|
||||
|
||||
|
||||
async def generate_graph(memory_name: str, payload: str):
|
||||
async def generate_graph(text_input:str,system_prompt_path:str, response_model: Type[BaseModel]):
|
||||
doc_path = "cognitive_architecture/infrastructure/llm/prompts/generate_graph_prompt.txt"
|
||||
llm_client = get_llm_client()
|
||||
return await llm_client.generate_graph(memory_name, doc_path=doc_path,payload= payload)
|
||||
return await llm_client.generate_graph(text_input,system_prompt_path, response_model)
|
||||
|
||||
|
|
|
|||
|
|
@ -161,7 +161,7 @@ class ProceduralContent(ContentType):
|
|||
type = "PROCEDURAL"
|
||||
subclass: List[ProceduralSubclass]
|
||||
|
||||
class SinglePrediction(BaseModel):
|
||||
class ContentPrediction(BaseModel):
|
||||
"""Class for a single class label prediction."""
|
||||
|
||||
label: Union[TextContent, AudioContent, ImageContent, VideoContent, MultimediaContent, Model3DContent, ProceduralContent]
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue